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Abstract

Type soundness is a property of a typed programming language stating that
a program’s type faithfully describes the program’s runtime behavior. The
statement and proof structure of a type soundness theorem depend not only
on the features of the programming language, but also on how the semantics
is formalized. While formalizations using a small-step semantics are reasonably
well explored, big-step semantics have received less attention, as they do not
allow reasoning about non-terminating programs. However, this property can
be regained by augmenting the big-step semantics with a simple step-counter,
leading to a concise representation as a monadic definitional interpreter.

This master’s thesis examines the use of step-indexed definitional inter-
preters as semantics for mechanized type soundness proofs. The general ap-
proach to the problem is briefly presented, followed by 5 case studies cover-
ing the simply typed lambda calculus and its extensions with mutable refer-
ences, substructural types, subtyping, and parametric polymorphism. Each
case study presented in this thesis is accompanied by a corresponding mecha-
nization using the Coq proof assistant. The mechanizations can be found at
https://github.com/m0rphism/definitional.

Zusammenfassung

Type Soundness ist eine Eigenschaft von getypten Programmiersprachen die
aussagt, dass der Typ eines Programms auch wirklich das Laufzeitverhalten
des Programms beschreibt. Die Formulierung und Beweisstruktur eines Type
Soundness-Theorems sind nicht nur von den Merkmalen der Programmierspra-
che abhängig, sondern auch davon wie die Semantik formalisiert wird. Während
Formalisierungen mit Small-Step Semantiken bereits ausgiebig erforsch sind, ha-
ben Big-Step Semantiken weniger Aufmerksamkeit erhalten, da diese es nicht
erlauben Aussagen über nicht-terminierende Programme zu treffen. Diese Ei-
genschaft kann aber zurückgewonnen werden indem man die Big-Step Seman-
tik um einen einfachen Schritt-Zähler erweitert, was sich zu einer präzisen Re-
präsentation als Monadic Definitional Interpreter eignet.

Diese Masterarbeit untersucht die Benutzung von schritt-indizierten Defini-
tional Interpretern als Semantik für mechanisierte Type Soundness-Beweise. Der
allgemeine Ansatz wird kurz präsentiert, gefolgt von 5 Fallstudien. Diese um-
fassen den Simply Typed Lambda Calculus und seine Erweiterungen mit Muta-
ble References, Substructural Types, Subtyping und parametrischem Polymor-
phismus. Zu jeder Fallstudie, die in dieser Arbeit vorgestellt wird, gibt es eine
entsprechende Mechanisierung mit dem Coq Beweisassistenten. Die Mechanisie-
rungen sind verfügbar unter https://github.com/m0rphism/definitional.
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Chapter 1

Introduction

1.1 Motivation

The type system of a statically typed programming language is supposed to
serve two purposes:

– it rules out certain classes of ill-formed programs, allowing implemen-
tations to avoid unnecessary runtime checks without risking undefined
behavior; and

– it classifies the well-formed programs by certain aspects of their runtime
behavior, allowing the programmer to rule out programs that exhibit well-
defined but unintended behavior.

For both purposes, it is vital that the type system faithfully describes the
runtime behavior of programs.

As an example, consider a language supporting basic operations on strings
and integer numbers. In such a language one can formulate well-formed expres-
sions like 2 + 3, but also ill-formed expressions like 2 + "foo".

Without a type system, both forms are valid, so an implementation of the
language would either have to dynamically check if the arguments to + are indeed
integers, causing a runtime error for 2 + "foo", or assume that the arguments
of + are always integers, causing undefined behavior for 2 + "foo", potentially
leading to violated memory safety and security risks.

With a type system, we can rule out such ill-formed expressions, by giving
the addition function + the type Int× Int→ Int, but "foo" the type String.
As the implementation has to deal only with well-typed programs, it can omit
the runtime checks for + without risking undefined behavior.

However, this relies crucially on the fact that a well-typed program can only
exhibit the runtime behavior expected of its type: if the type system would
permit giving "foo" the type Int, even though it evaluates to a non-integral
value, then both purposes would be violated.

1.2 Type Soundness

Statically typed programming languages are usually formalized by their syntax,
semantics, and type system. The syntax describes the structure of programs,
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the semantics describes how programs can be evaluated in a specific environ-
ment, and the type system categorizes programs without assuming a specific
environment.

A type system is sometimes also called static semantics[6], stressing that the
types it assigns to a program are intended to capture aspects of the program’s
semantics that are valid for all possible environments.

However, there is no inherent connection between type systems and seman-
tics, that makes the assigned types automatically describe the semantics of a
program. This correspondence has to be proved first and is called type sound-
ness.

Wright and Felleisen[18] describe type soundness in the context of a partial
evaluation function

eval : Programs→ Answers∪{wrong}

that maps erroneous programs (type errors) to wrong, and is undefined for non-
terminating programs. Given a typing relation . e : t, they state two forms of
type soundness:

WeakSoundness
. e : t

eval(e) 6= wrong

StrongSoundness
. e : t eval(e) = v

v ∈ V t

– weak soundness asserts that if a program e has a type t, then evaluating
e does not lead to a type error; and

– strong soundness asserts that if a program e has a type t, and evaluating
e does terminate, then the result is not only not wrong, but also belongs
to the set of values related to type t.

When the term type soundness is used unqualified, it usually refers to strong
type soundness. Note, that specifying a type soundness theorem, does also
require to specify the form of type errors by giving the semantics, and the form
of well typed results by defining V t, the set of values of type t.

For an implementation, weak type soundness means, that well-typed pro-
grams do not evaluate to wrong, so there’s no need to generate code that dy-
namically checks for wrong. Note, that this does not rule out runtime errors in
general: checked runtime errors can still be added to the semantics, they just
have to use another encoding than wrong.

1.3 Influence of Semantics

The statement and proof structure of a type soundness theorem strongly depend
on how the semantics of the language is formalized. In this section, we formalize
the language fragment from Section 1.1 using different forms of semantics and
examine the influence on the statement of a type soundness theorem.

We start by formalizing the syntax of program expressions:

Inductive Exp : Type :=
| e num : N → Exp
| e str : String → Exp
| e add : Exp → Exp → Exp.
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An expression e : Exp is defined to be either

– a number literal e num n for some number n;

– a string literal e str s for some string s; or

– the addition e add e1 e2 of two subexpressions e1, e2.

For example, we can represent the ill-formed term 2 + ”foo” from the previous
chapter as the expression e add (e num 2) ( e str ”foo”).

We give the syntax of types as

Inductive Typ : Type :=
| t nat : Typ
| t str : Typ.

i.e. a type t : Typ is defined to be either the type of natural numbers t nat, or
the type of strings t str .

Next we formulate the type system, where ExpTyp e t stands for . e : t:

Inductive ExpTyp : Exp → Typ → Prop :=
| et num :
∀ n, ExpTyp (e num n) t nat

| et str :
∀ s , ExpTyp (e str s) t str

| et add :
∀ e1 e2,
ExpTyp e1 t nat →
ExpTyp e2 t nat →
ExpTyp (e add e1 e2) t nat.

Each constructor corresponds to a typing rule, and we have one constructor for
each kind of expression:

– et num states that for any number n the expression e num n has type t nat;

– et str states that for any string s the expression e str s has type t str ;

– et add states that an addition expression e add e1 e2 has type t nat, if
both e1 and e2 have type t nat.

For example, we can use the et add and et num constructors to derive

et add (et num 1) (et num 2)
: ExpTyp (e add (e num 1) (e num 2)) t nat

but no combination of constructors is able to derive

ExpTyp (e add (e num 1) (e str ”foo”)) t

for any type t.
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1.3.1 Small-Step Semantics

Small-step semantics describe evaluation through a binary relation ↪→ be-
tween expressions and a notion of when an expression is considered a value.

The statement e1 ↪→ e2 denotes that e2 can be obtained from e1 in a single
evaluation step. The evaluation of an expression e is then viewed as the repeated
application of the relation

e ↪→ e1 ↪→ e2 ↪→ ...

Either the chain never stops - then e is considered non-terminating - or
the chain stops at an expression en for some n. In the latter case, either en
is considered a value, then the evaluation succeeds with that value, or the

evaluation is stuck, representing a type error.
For our example language, we would expect such a relation to evaluate the

expression (1 + 2) + 3 in two steps to the value 6

(1 + 2) + 3 ↪→ 3 + 3 ↪→ 6

whereas we would expect the ill-formed expression 2 + ”foo” to be directly
stuck.

We formally define the semantics, by giving two relations IsValue and Step:

Inductive IsValue : Exp → Prop :=
| iv num : ∀ n, IsValue (e num n)
| iv str : ∀ s , IsValue ( e str s) .

We consider e num n and e str s expressions as values, but not addition e add
e1 e2, as such an expression represents an unfinished computation.

Inductive Step : Exp → Exp → Prop :=
| s add :
∀ n1 n2,
Step (e add (e num n1) (e num n2)) (e num (n1 + n2)).

| s add1 :
∀ e1 e2 e1 ’,
Step e1 e1’ →
Step (e add e1 e2) (e add e1’ e2)

| s add2 :
∀ e1 e2 e2 ’,
IsValue e1 →
Step e2 e2’ →
Step (e add e1 e2) (e add e1 e2’)

We define the semantics relation by three rules related to addition:

– the s add rule states that an addition of two number values can be evalu-
ated by simply adding the numbers;

– the s add1 rule states that e add e1 e2, can be evaluated to e add e1’ e2,
if e1 can be evaluated to e1’; and

– the s add2 rule states that e add e1 e2, can be evaluated to e add e1 e2’,
if e1 is already a value and e2 can be evaluated to e2’.
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To be able to talk about sequences of evaluation steps, we define the reflexive,
transitive closure Multi R of a binary relation R as

Inductive Multi {X : Type} (R : X → X → Prop) : X → X → Prop :=
| m refl : ∀ x, Multi R x x
| m step : ∀ x y z, Multi R x y → R y z → Multi R x z.

This allows us to write Multi Step e e’ to denote that e can be evaluated to e’
in zero or more steps.

Wright and Felleisen[18] introduced the standard approach of proving sound-
ness via small-step semantics with two lemmas:

Lemma 1.1 (Preservation).

∀ e1 e2 t , ExpTyp e1 t → Step e1 e2 → ExpTyp e2 t.

Lemma 1.2 (Progress).

∀ e1 t , ExpTyp e1 t → IsValue e1 ∨ ∃ e2, Step e1 e2.

The first lemma states that typing is preserved under evaluation, i.e. that
if an expression e1 has type t, and e1 evaluates in one step to e2, then e2 also
has type t.

The second lemma states that typed expressions are not type errors, i.e.
that if an expression e has a type t, then either e is a value or it can be further
reduced to some expression e2.

Together, they lead towards a syntactic soundness theorem:

Theorem 1.1 (Syntactic Type Soundness).

∀ e t ,
ExpTyp e t →
Diverges e ∨ ∃ v, IsValue v ∧ Multi Step e v ∧ ExpTyp v t.

where Diverges e is defined as

Definition Diverges (e : Exp) : Prop :=
∀ e ’, Multi Step e e’ → ∃ e’’, Step e’ e ’’.

The Syntactic Type Soundness theorem is close to Wright and Felleisen’s
statement of strong soundness. However, in most mechanizations with small-
step semantics only the preservation and progress lemma are proved, but not a
syntactic soundness theorem.

Wright and Felleisen describe the type soundness proofs via preservation
and progress lemmas as “lengthy but simple, requiring only basic inductive
techniques”[18].

1.3.2 Big-Step Semantics

Big-step semantics describe evaluation through a binary relation ⇓ directly
between expressions and the values they evaluate to.

For example, in our language we would expect (1 + 2) + 3 ⇓ 6 to hold.
To formally describe the big-step semantics, we first give a notion of value.

In contrast to small-step semantics, values are not a sub-class of expressions,
but a separate syntactic entity. In our simple language, the only values are
numbers and strings:
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Inductive Val : Type :=
| v num : N → Val
| v str : String → Val.

We then define the semantics relation with one constructor for each kind of
expression:

Inductive BigStep : Exp → Val → Prop :=
| bs num :
∀ n,
BigStep (e num n) (v num n)

| bs str :
∀ s ,
BigStep ( e str s) ( v str s)

| bs add :
∀ e1 e2 n1 n2,
BigStep e1 (v num n1) →
BigStep e2 (v num n2) →
BigStep (e add e1 e2) (v num (n1 + n2)).

– bs num states that a number expression e num n evaluates to the number
value v num n;

– bs str states that a string expression e str s evaluates to the string value
v str s; and

– bs add states that an addition expression e add e1 e2 evaluates to v num
(n1 + n2) if e1 evaluates to v num n1 and e2 evaluates to v num n2.

Before we come to type soundness, we need to specify a typing relation
between values and types, as values are now a separate syntactic entity. The
typing relation simply states, that any number or string value has a number or
string type, respectively:

Inductive ValTyp : Val → Typ → Prop :=
| vt num : ∀ n, ValTyp (v num n) t nat
| vt str : ∀ s , ValTyp ( v str s) t str .

There are now two obvious choices for trying to formulate type soundness,
which are unfortunately both insufficient:

ExpTyp e t

∃ v BigStep e v ValTyp v t

ExpTyp e t BigStep e v

ValTyp v t

The left theorem states, that if an expression e has type t, then e evaluates
to some value v of type t. While correct for our simple language, this state-
ment is too strong in general: as soon as we have well-typed, non-terminating
expressions, it is not true anymore that BigStep e v holds for all well-typed
expressions.

The right theorem states, that if an expression e has type t and e evaluates to
value v, then v has type t. While correct, this statement is too weak in general:
it only guarantees the abscence of type errors for terminating programs. For
non-terminating programs, the assumption BigStep e v can not be satisfied, so
type errors are not proved impossible in those cases.

10



1.3.3 Definitional Interpreter

The problem with big-step semantics is, that to formulate a type soundness theo-
rem of the right strength, it is necessary to distinguish between non-terminating
programs and type errors.

While we could change the semantics relation, such that it is still undefined
for non-terminating programs, but returns a special value wrong for type errors,
and right v for regular values, this would lead to ugly artifacts in the formaliza-
tion of the semantics, as a lot of rules would have to be added, just to propagate
wrong through subexpressions.

A cleaner representation can be achieved by encoding the semantics relation
directly as a definitional interpreter in Coq, which allows the propagation of
type errors to be hidden behind a monad.

As Coq is a total meta language, it is not possible to implement a definitional
interpreter for languages that are not strongly normalizing as a regular Coq-
function. However, this can be worked around by extending the interpreter with
a step-counter, that restricts the maximal recursive depth of the interpreter.

We represent the error and non-termination conditions each through the
Maybe type:

Inductive Maybe (X : Type) : Type :=
| none : Maybe X
| some : X → Maybe X.

To increase readability, we use the following notations:

CanTimeout :≡ Maybe timeout :≡ none done :≡ some

CanErr :≡ Maybe error :≡ none noerr :≡ some

We then state the definitional interpreter as a Coq function

eval : N → Exp → CanTimeout (CanErr Val)

such that eval n e corresponds to trying to evaluate the expression e in n steps,
returning

– timeout if the number of steps n was too small;

– done error if the evaluation caused a type error; and

– done (noerr v) if the evaluation succeeded with value v.

Our first definition of the interpreter is without monadic notation:

Fixpoint eval (n : N) (e : Exp) : CanTimeout (CanErr Val) :=
match n with
| 0 ⇒ timeout
| S n ⇒

match e with
| e num n ⇒ done (noerr (v num n))
| e str s ⇒ done (noerr (v str s))
| e add e1 e2 ⇒

match eval n e1 with
| done (noerr (v num n1)) ⇒
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match eval n e2 with
| done (noerr (v num n2)) ⇒

done (noerr (v num (n1 + n2)))
| done ⇒ done error
| timeout ⇒ timeout
end

| done ⇒ done error
| timeout ⇒ timeout
end

end
end.

The interpreter first checks if there are any steps n left to perform. If this is
not the case, evaluation is stopped by returning timeout. Otherwise, evaluation
proceeds by pattern matching on the expression e: If e is a number or string lit-
eral, then the corresponding value is returned, requiring no further steps. If e is
the addition e add e1 e2 of two other expressions, then we try to evaluate both
subexpressions in at most n−1 steps. If both subexpressions evaluated success-
fully to number values v num, then the evaluation of the addition succeeds by
returning the sum of the number values. However, if one of the subexpressions
fails to evaluate, then evaluation of the addition has to fail accordingly, causing
a lot of noise through branches for simple error propagation.

To hide the propagation of the timeout and error cases, we introduce a
notation for the monadic sequencing of the CanTimeout ◦ CanErr monad:

Notation ”’ p ← e1 ; e2” :=
(match e1 with
| done (noerr p) ⇒ e2
| done ⇒ done error
| timeout ⇒ timeout
end)

( right associativity , at level 60, p pattern) .

Note, that p is specified as a pattern parameter, so if p fails to match, then
done error is returned, similar to Haskell’s MonadFail concept.

We can now reformulate the interpreter in a much more concise way:

Fixpoint eval (n : N) (e : Exp) : CanTimeout (CanErr Val) :=
match n with
| 0 ⇒ timeout
| S n ⇒

match e with
| e num n ⇒ done (noerr (v num n))
| e str s ⇒ done (noerr (v str s))
| e add e1 e2 ⇒

’ v num n1 ← eval n e1;
’ v num n2 ← eval n e2;
done (noerr (v num (n1 + n2)))

end
end.

Finally, we state the type soundness theorem:
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Theorem 1.2 (Type Soundness).

∀ n e mv t,
eval n e = done mv →
ExpTyp e t →
∃ v, mv = noerr v ∧ ValTyp v t.

This theorem is closely related to Wright and Felleisen’s strong soundness.
The only difference is the step index n.

Similar to Wright and Felleisen’s approach for small-step semantics, the type
soundness proofs using step-indexed definitional interpreters require only basic
inductive proof techniques.

In contrast to small-step semantics, it’s straightforward to derive an im-
plementation from the semantics: it suffices to omit the step-index from the
definitional interpreter, such that it runs as much steps as needed.

1.4 Related Work

Milner famously gave an informal definition of type soundness in 1978: “Well-
typed programs cannot go wrong”[7].

Wright and Felleisen’s seminal paper from 1994 restated this as: “Well-typed
programs do not get stuck”, and coined the usage of preservation and progress
for type soundness with small-step semantics that’s widely used until today[18].

The approach with step-indexed definitional interpreters was recently used
in 2015 for Coq mechanizations of type soundness proofs related to Scala’s
Dot Calculus[13] and second-class values[8]. The formalization of the Dot Cal-
culus with a definitional interpreter, instead of a small-step semantics, brings
the benefit that no workaround for a substitution preserves typing lemma is
necessary, which doesn’t hold for the Dot Calculus in general. The technique
of step-indexing a definitional interpreter was presented in two blog posts by
Siek[15, 16], who dates it back to a book by Ernst[5] from 2006.

The simply typed lambda calculus with small step semantics and many of
its extensions have been proved sound in the foundational books[9, 10, 6, 11].

SML has been proved type sound, up to unsafe system operations provided
by the implementations[4].

Rust’s core has been proved type sound[17].
Java’s and Scala’s type systems have been proved unsound[14, 1]. The second

paper derives a Java function that can coerce any type to any other type, without
making use of type casting. Fortunately, the soundness hole only leads to a
runtime exception in the Java Virtual Machine.

1.5 Outline & Contributions

The rest of this thesis is structured according to Figure 1.1:

– Chapter 2 presents a small foundational framework for definitional inter-
preters on which the formalizations in the subsequent chapters are based.
The framework contains definitions of and lemmas about basic data struc-
tures like lists, natural numbers, and the Maybe type;

13



1

2

3

4 5 6 7

Figure 1.1: Dependencies between chapters

– Chapter 3 presents a formalization of the simply typed lambda calculus
with a step-indexed definitional interpreter, and states and proves the
corresponding type soundness theorem. A big-step semantics is formalized
and proved equivalent to the definitional interpreter. The type soundness
theorem requires only a single lemma, which is part of the framework;

– Chapter 4 extends the formalization of the simply typed lambda calculus
with subtyping;

– Chapter 5 extends the formalization of the simply typed lambda calculus
with substructural types, such that lambda abstractions with both affine
and unrestricted multiplicities are supported;

– Chapter 6 extends the formalization of the simply typed lambda calculus
with mutable references; and

– Chapter 7 extends the formalization of the simply typed lambda calcu-
lus with parametric polymorphism à la System F. The formalization is
inspired by the mechanization of System F<: by Rompf and Amin[13].

The formalizations are presented using actual Coq code, but the proofs are
presented informally, as Coq’s tactic scripts are very hard to read without an
interactive support system. To help the reader to relate the presentations in this
thesis to the actual Coq mechanizations, we use the same names for definitions,
lemmas, and variables as in the actual Coq files.

To the best of our knowledge, the soundness theorems for subtyping, sub-
structural types, and System F have not been proved with definitional inter-
preters before.

As an additional contribution, not presented in this thesis, we have also
created an alternative version to Rompf and Amin’s System F<: proof, which
proves the equivalence between the logical and the algorithmic subtyping of
System F<:, instead of using a workaround with ”transitivity pushback”. While
this equivalence has been proved before[9], it hasn’t been proved in the con-
text of definitional interpreters, where the subtyping relation for values has to
incorporate a type equivalence modulo environments, which causes non-trivial
complications. We choose not to present the formalization, as it would exceed
the bounds of a master’s thesis.
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Chapter 2

Framework

In this chapter, we introduce a set of general definitions and lemmas, that are
helpful for the formalizations presented in all subsequent chapters. Those are
pretty standard and should be largely included in the standard libraries of most
proof assistents.

2.1 Maybe Monad

As we have already covered the Maybe monad in Section 1.3.3, we only repeat
the definitions for completeness, and introduce one new definition: the map
function.

The Maybe type is given by

Inductive Maybe (X : Type) : Type :=
| none : Maybe X
| some : X → Maybe X.

We use the following notations in the context of definitional interpreters:

CanTimeout :≡ Maybe timeout :≡ none done :≡ some

CanErr :≡ Maybe error :≡ none noerr :≡ some

The monadic sequencing of the CanTimeout ◦ CanErr monad is given by:

Notation ”’ p ← e1 ; e2” :=
(match e1 with
| done (noerr p) ⇒ e2
| done ⇒ done error
| timeout ⇒ timeout
end)

( right associativity , at level 60, p pattern) .
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The map operation is given by

Definition mmap {X Y : Type} (f : X → Y) (mx : Maybe X) : Maybe Y :=
match mx with
| none ⇒ none
| some x ⇒ some (f x)
end.

2.2 Natural Numbers

The systems covered in this thesis require a notion of variables. In most pre-
sentations, the precise definition of variables is left opaque, and instead the
existence of some countably infinite set is assumed, together with a notion of
decidable equality on its elements.

We choose to identify this set of variables simply with the natural numbers:

Inductive N : Set :=
| O : N
| S : N → N.

To define a decidable equality, we make use of the booleans

Inductive B : Set :=
| true : B
| false : B.

We use a standard decision procedure to decide equality of natural numbers:

beq nat : N → N → B

and a corresponding reflection principle:

beq eq iff : ∀ (x y : N), beq nat x y = true ↔ x = y

2.3 Lists

Working with languages that provide variables or memory locations, requires
defining our relations with respect to the types and values of those variables or
memory locations.

As we are going to represent variables and memory locations as natural
numbers, it is natural to represent environments, e.g. mappings from variables
to values, as lists of values indexed by their variables.

Hence, we introduce a list data type with a few basic operations and lemmas
about them.

Inductive List (X : Type) : Type :=
| nil : List A
| cons : A → List A → List A

We use the notation [] for nil , and x :: xs for cons x xs.
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2.3.1 Basic Operations

The length function computes the number of elements in the list.

Fixpoint length {X : Type} (xs : List X) : N =
match xs with
| [] ⇒ 0
| :: xs ⇒ S (length xs)
end.

The indexr function retrieves the n-th element counting from the right of the
list, e.g. indexr 0 (x :: y :: []) = some y.

Fixpoint indexr {X : Type} (n : N) (xs : List X) : Maybe X :=
match xs with
| [] ⇒ none
| x :: xs ’ ⇒ if beq nat n (length xs’) then some x else indexr n xs’
end.

The append function concatenates two lists. We use the notation xs1 ++ xs2
to denote append xs1 xs2.

Fixpoint append {X : Type} (xs1 xs2 : List X) : List X :=
match xs1 with
| [] ⇒ xs2
| x :: xs1 ⇒ x :: append xs1 xs2
end.

The update function replaces the n-th element counting from the right of the
list, e.g. update 0 y’ (x :: y :: []) = x :: y’ :: [] .

Fixpoint update {X : Type} (n : N) (x’ : X) (xs : List X) : List X :=
match xs with
| [] ⇒ []
| x :: xs ⇒ if beq nat n (length xs)

then x’ :: xs
else x :: update n x’ xs

end.

Next, we proof two lemmas related to indexr :

Lemma 2.1 (indexr max).

∀ X (xs : List X) (n : N) (x : X),
indexr n xs = some x →
n < length xs .

Proof. Straightforward induction over xs, followed by a case analysis on n in
the cons case.
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Lemma 2.2 (indexr extend).

∀ X xs n x’ (x : X),
indexr n xs = some x →
indexr n (x’ :: xs) = some x.

Proof. Straightforward reasoning using Lemma 2.1.

2.3.2 Forall2

When we represent values and types of variables as lists of values and types,
then we often need to state that a binary relation R holds between the value
and type of each variable.

We cover this scenario generally by introducing the Forall2 R xs ys type,
which states that the binary relation R : X →Y →Prop holds between each pair
of the zipping of the two lists xs and ys, i.e. R x1 y1 ∧ ... ∧ R xn yn.

Inductive Forall2 {X Y : Type} (R : X → Y → Prop) : List X → List Y →
Prop :=

| fa2 nil :
Forall2 R [] []

| fa2 cons :
∀ (x : X) (y : Y) (xs : List X) (ys : List Y),
R x y →
Forall2 R xs ys →
Forall2 R (x :: xs) (y :: ys) .

If two lists are related by Forall2 R xs ys, then by construction they have
the same length:

Lemma 2.3 (fa2 length).

∀ {X Y} {R : X → Y → Prop} {xs ys},
Forall2 R xs ys →
length xs = length ys .

Proof. Straightforward induction over the evidence for Forall2 R xs ys.

While the next lemma is intuitively obvious, it will be essential in the variable
cases of all type soundness theorems presented in this thesis:

Lemma 2.4 (fa2 indexr).

∀ {X Y} {R : X → Y → Prop} {xs ys} {y} {n},
Forall2 R xs ys →
indexr n ys = some y →
∃ x, indexr n xs = some x ∧ R x y.

Proof. We start by induction over Forall2 R xs ys:

– Case fa2 nil . By definition of fa2 nil , we have ys = [], so by definition
of indexr , the assumption indexr n ys = some t reduces to none = some t,
so we can discard this case by contradiction.
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– Case fa2 cons. By definition of fa2 cons, we have some xs ’, ys ’, x ’, y’
such that

xs = x’ :: xs ’ ys = y’ :: ys ’ Forall2 R xs’ ys ’ R x’ y’

We proceed by case analysis on the index n:

– Case 0. By definition of indexr , we have

indexr 0 xs = some x’ indexr 0 ys = some y’ = some y

so we choose x = x’, and are done by assumptions.

– Case n+1. By definition of indexr , we have

indexr (n + 1) xs = indexr n xs ’

indexr (n + 1) ys = indexr n ys ’ = some y

so we apply the induction hypothesis to conclude the goal.

We prove a similar lemma using update instead of indexr , which will be used
by the formalization of mutable references presented in Chapter 6:

Lemma 2.5 (fa2 update l).

∀ {X Y} (R : X → Y → Prop)
(xs : List X) (ys : List Y) (n : N) (x : X) (y : Y),

indexr n ys = some y →
Forall2 R xs ys →
R x y →
Forall2 R (update n x xs) ys .

Proof. Very similar structure to fa2 indexr .

2.3.3 Suffixes

When we come to the formalization of mutable references in Chapter 6, we need
to state what it means for a list to be the suffix of another list.

We define the suffix-relation by stating that a list xs1 is the suffix of a list
xs2, if there exists some list xs such that appending xs to xs1 results in xs2:

Definition IsSuffixOf {X} (xs1 xs2 : List X) : Prop :=
∃ xs , xs ++ xs1 = xs2.

Next, we prove that the suffix-relation is reflexive and transitive:

Lemma 2.6 (suffix refl).

∀ {X} {xs : List X},
IsSuffixOf xs xs .

Proof. Immediate by choosing [] for the existential variable from IsSuffix .
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Lemma 2.7 (suffix trans).

∀ {X} {xs1 xs2 xs3 : List X},
IsSuffixOf xs1 xs2 →
IsSuffixOf xs2 xs3 →
IsSuffixOf xs1 xs3.

Proof. Straightforward reasoning using associativity of append.

The next lemma states that if xs1 is a suffix of xs2, then right-indexing the
lists at their common entry yields common results:

Lemma 2.8 (indexr suffix).

∀ {X} n (xs1 xs2 : List X) (x : X),
indexr n xs1 = some x →
IsSuffixOf xs1 xs2 →
indexr n xs2 = some x.

Proof. Straightforward induction over xs2, followed by a case analysis on n in
the cons case, and an application of Lemma 2.1.
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Chapter 3

Simply Typed Lambda
Calculus

In this chapter, we give a formalization of the Simply Typed Lambda Calculus
(STLC) with the empty base type using a stepped definitional interpreter se-
mantics, and then state and proof the corresponding type soundness theorem.
This chapter forms the basis on which all formalizations and proofs from later
chapters build on.

3.1 Syntax

The syntax of the STLC is usually given by a grammar like

t ::= ∅ | t→ t (Types)

e ::= x | λx : t.e | e e (Expressions)

stating that

– a type t is either the void type ∅; or a function type t1 → t2 between two
other types t1 and t2; and

– an expression e is either a variable x; a lambda abstraction λx : t.e binding
a variable x of type t in body e; or a lambda application e1 e2 applying
e1 to argument e2.

In our formalization, we make two changes to this representation:

– we use a nameless representation of variables as DeBruijn Levels[3]; and

– we omit the type annotation in lambda abstractions, as those play no role
for type soundness.

The variable representation as DeBruijn Levels encodes variables as natural
numbers n referring to the n-th outmost lambda abstraction. This makes the
variable names in the binders of lambda abstractions redundant, as the variables
themselves state to which binder they belong. For example, the lambda term
λf. λx. f x has the DeBruijn Level encoding λ. λ. 0 1.
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While nameless variable representations enjoy many interesting properties,
like α-equivalence being the same as syntactic equality, those properties are only
relevant in our last case study of parametric polymorphism. For the simply
typed lambda calculus, the choice is irrelevant to the proof structure of type
soundness, as we will discuss in Section 3.7. The reason, why we still choose
this representation, is that it allows us to present all case studies in a uniform
manner, and to reuse various basic lemmas for different language features.

Thus, we formalize the syntax as

Inductive Typ : Type :=
| t void : Typ
| t arr : Typ → Typ → Typ.

Inductive Exp : Type :=
| e var : N → Exp
| e app : Exp → Exp → Exp
| e abs : Exp → Exp.

The lambda term λf. λx. f x is then encoded as

e abs (e abs (e app ( e var 0) ( e var 1))) .

3.2 Type System

In this section, we specify the type system of the STLC.
In Section 1.3, we specified the type system of our example language as a

binary relation . e : t, stating that expression e has type t. If we try the same
for the STLC, we run into problems with the variable case: a variable e var x
hasn’t a fixed type by itself, but instead has a type determined by the variable’s
context.

To solve this problem, we specify the type system as a tertiary relation
between expressions, types, and a so called type environment, that records the
types of variables. The basic idea is then, that the typing relation extends the
type environment when it goes inside an abstraction, such that the contained
variables can refer to the type environment for their type.

As we represent variables as DeBruijn Levels, we define type environments
simply as lists of types, which are indexed by variables:

Definition TypEnv := List Typ.

We then define the type system by giving one constructor for each expression:

Inductive ExpTyp : TypEnv → Exp → Typ → Prop :=
| et var :
∀ x te t ,
indexr x te = some t →
ExpTyp te (e var x) t

| et app :
∀ te e1 e2 t1 t2,
ExpTyp te e1 ( t arr t1 t2) →
ExpTyp te e2 t1 →
ExpTyp te (e app e1 e2) t2
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| et abs :
∀ te e t1 t2,
ExpTyp (t1 :: te) e t2 →
ExpTyp te (e abs e) ( t arr t1 t2) .

– The et var constructor states that a variable e var x has type t, if the
type environment te records that x has indeed type t;

– The et abs constructor states that a lambda abstraction e abs e has type
t arr t1 t2, if its body e has type t2 in type environment t1 :: te, i.e. in
the type environment te that now also records that the variable bound by
the abstraction has type t1; and

– The et app constructor states that a lambda application e app e1 e2 has
type t2, if e1 has a function type t arr t1 t2, and e2 has the corresponding
argument type t1.

3.3 Big-Step Semantics

In this section, we specify the big-step semantics of the STLC. While we don’t
need the big-step semantics for our formalization of type soundness, which will
be strictly in terms of a definitional interpreter, we still define the big-step
semantics for comparison and to state an equivalence theorem with respect to
the definitional interpreter in the next section.

When we try to state the big-step semantics as a binary relation, as we did
in Section 1.3, we run into the same problems as for the type system: just like
the type of a variable depends on the variable’s context, so does its value.

Hence, we use the same strategy as before and introduce the semantics rela-
tion as a tertiary relation between expressions, values, and value environments.

Similar to type environments, we represent value environments simply as
lists of values indexed by variables:

Definition ValEnv := List Val.

The only values we have are closures resulting from the evaluation of lambda
abstractions:

Inductive Val :=
| v abs (ve : ValEnv) (e : Exp).

In contrast to a lambda abstraction, which only carries its body e, a closure
also carries the value environment ve in which the original lambda abstraction
was evaluated. The reason for this is, that lambda abstractions may capture
variables from the outside. If we then apply such an abstraction later to an
argument, we need to access the values of those captured variables to evaluate
the body of the abstraction.
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We are now equipped to specify the semantics relation:

Inductive BigStep : ValEnv → Exp → Val → Prop :=
| bs var :
∀ ve x v,
index x ve = some v →
BigStep ve ( e var x) v

| bs abs :
∀ ve e,
BigStep ve (e abs e) (v abs ve e)

| bs app :
∀ ve e1 e2 ve’ e’ v2 v,
BigStep ve e1 (v abs ve’ e ’) →
BigStep ve e2 v2 →
BigStep (v2 :: ve ’) e’ v →
BigStep ve (e app e1 e2) v.

– the bs var constructor states that a variable e var x evaluates to a value
v, if the value environment ve maps x to that value;

– the bs abs constructor states that a lambda abstraction e abs e evaluates
to its closure v abs ve e in the current environment ve; and

– the bs app constructor states that a lambda application e app e1 e2 eval-
uates to a value v, if e1 evaluates to a closure v abs ve’ e’ , e2 evaluates
to some value v2, and the closure’s body e1’ evaluates to v in its captured
environment ve’ extended by the argument value v2 for the closure’s vari-
able.

3.4 Definitional Interpreter

In this section, we derive a monadic definitional interpreter for the STLC from
the big-step semantics presented in the previous section.

Compared to the definitional interpreter from Subsection 1.3.3, our inter-
preter function now requires an additional argument for the value environment.

The translation from the big-step semantics is straightforward:

Fixpoint eval (n : N) (ve : ValEnv) (e : Exp) : CanTimeout (CanErr Val)
:=

match n with
| 0 ⇒ none
| S n ⇒

match e with
| e var x ⇒ done (indexr x ve)
| e abs e ⇒ done (noerr (v abs ve e))
| e app e1 e2 ⇒

’ v abs ve1’ e1’ ← eval n ve e1;
’ v2 ← eval n ve e2;
eval n (v2 :: ve1’) e1’

end
end.
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– variables e var x are evaluated in one step that is successful exactly if the
value environment ve contains some value for x, i.e. indexr x ve = some v;

– abstractions e abs e are always evaluated successfully in one step to their
closure v abs ve e in the current environment; and

– applications e app e1 e2 are evaluated successfully in n+1 steps, if both
their arguments and the closure body evaluate successfully in n steps to
values of the expected form. If one of the evaluations of the subexpressions
timeouts or fails, then the monadic sequencing ensures that the whole
computation timeouts or fails as expected.

It’s straightforward to proof, that the big-step semantics is equivalent to
the definitional interpreter, in the sense that the big-step semantics evaluates
an expression to a value if and only if the definitional interpreter evaluates the
expression to the same value in some number of steps:

Theorem 3.1 (sem eq).

∀ ve e v,
BigStep ve e v ↔ (∃ n, eval n ve e = done (noerr v)) .

Proof. We choose to omit the proof from the presentation, as this equivalence
is not central to this thesis. It’s a simple proof using only induction in both
directions. The interested reader can refer to the Coq mechanization in the
accompanied file Chap 3 STLC SemEq.v.

3.5 Type Soundness

Before we state a type soundness theorem, we have to specify the value typ-
ing. Our only kind of values is closures v abs ve e, which result from lambda
abstractions e abs e. Hence, the value typing of closures is similar to the ex-
pression typing of abstractions, but has to additionally take care of the value
environment ve. For each value of the captured variables from ve, we need a
witness that the value indeed has the variable’s type in the type environment
te of the closure’s body e. To model this well-formedness relationship between
value and type environments, we make use of the Forall2 type from Chapter 2

Definition WfEnv : ValEnv → TypEnv → Prop :=
Forall2 ValTyp.

and state the value typing as

Inductive ValTyp : Val → Typ → Prop :=
| vt abs :
∀ ve te e t1 t2,
Forall2 ValTyp ve te →
ExpTyp (t1 :: te) e t2 →
ValTyp (v abs ve e) ( t arr t1 t2) .

The vt abs constructor states, that a closure v abs ve e has type t arr t1 t2,
if there is some type environment te, such that the values of ve have their
corresponding type in te, and the closure’s body e has type t2 in te extended
by t1.
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type soundness

fa2 indexr

fa2 length indexr extend

indexr max beq eq iff

Figure 3.1: Proof Graph for STLC Soundness

We are now equipped to state type soundness as

Theorem (Type Soundness).

∀ (n : N) (e : Exp) (mv : CanErr Val) (t : Typ),
eval n [] e = done mv →
ExpTyp [] e t →
∃ v, mv = noerr v ∧ ValTyp v t.

While correct, this formulation does not give us a suitable induction hypoth-
esis. The evaluation of an application e app e1 e2 requires us to reason about
the body of the closure value resulting from the evaluation of e1. This body is
typed and evaluated in environments that are different from [] .

Hence, we strengthen the theorem as follows (changes are marked red):

Theorem (Type Soundness).

∀ (n : N) (e : Exp) (te : TypEnv) (ve : ValEnv) (mv : CanErr Val)
(t : Typ),

eval n ve e = done mv →
ExpTyp te e t →
WfEnv ve te →
∃ v, mv = noerr v ∧ ValTyp v t.

3.6 Type Soundness Proof

Figure 3.1 shows the proof graph of the type soundness theorem. The proof of
the theorem itself requires only a single lemma, which is used in the variable
case. As we have already proved this lemma in the framework as Lemma 2.4,
we start directly with the proof of the type soundness theorem:

Theorem 3.2 (Type Soundness).

∀ (n : N) (e : Exp) (te : TypEnv) (ve : ValEnv) (mv : CanErr Val)
(t : Typ),

eval n ve e = done mv →
ExpTyp te e t →
WfEnv ve te →
∃ v, mv = noerr v ∧ ValTyp v t.

Proof. We start by induction over the number of steps n:

– Case 0. By definition of eval , the assumption eval 0 ve e = done mv re-
duces to timeout = done mv, so we can discard this case by contradiction.

– Case n + 1. We proceed by case analysis on the typing derivation ExpTyp te e t:
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– Case et var . By definition of et var , we have some x such that

e = e var x indexr x te = noerr t.

By definition of eval , the assumption eval (n + 1) ve ( e var x) =
done mv reduces to

done (indexr x ve) = done mv

Thus, by substituting indexr x ve for mv, we are left to prove

WfEnv ve te →
indexr x te = noerr t →
∃ v, indexr x ve = noerr v ∧ ValTyp v t

which is an instance of Lemma 2.4 ( fa2 indexr ).

– Case et abs. By definition of et abs, we have some e ’, t1 , t2 such
that

e = e abs e’ t = t arr t1 t2 ExpTyp (t1 :: te) e’ t2

By definition of eval , the assumption eval (n + 1) ve (e abs e ’) =
done mv reduces to

done (noerr (v abs ve e ’) ) = done mv

Thus, by substituting for mv, we are left to prove

∃ v, v abs ve e’ = v ∧ ValTyp v (t arr t1 t2)

so we choose v = v abs ve e’ and construct the value typing from our
assumptions:

WfEnv ve te ExpTyp (t1 :: te) e’ t2

ValTyp (v abs ve e ’) ( t arr t1 t2)
vt abs

– Case et app. By definition of et app, we have some e1, e2, t1, t2
such that

e = e app e1 e2 t = t2 ExpTyp te e1 ( t arr t1 t2) ExpTyp te e2 t1

By definition of eval , the assumption

eval (n + 1) ve (e app e1 e2) = done mv

reduces to

’ v abs ve’ e1’ ← eval n ve e1;
’ v2 ← eval n ve e2;
eval n (v2 :: ve ’) e1’ = done mv

Next, we observe that there must be some mv1 and mv2 such that

eval n ve e1 = done mv1 eval n ve e2 = done mv2
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because otherwise our definition of monadic sequencing would cause
the whole left hand side to evaluate to timeout, leading to the con-
tradiction timeout = done mv.

We are now equipped to apply our induction hypothesis to the eval-
uation of both subexpressions:

eval n ve e1 = done mv1 ExpTyp te e1 ( t arr t1 t2) WfEnv ve te

∃ v1, mv1 = noerr v1 ∧ValTyp v1 ( t arr t1 t2)
IH

eval n ve e2 = done mv2 ExpTyp te e2 t1 WfEnv ve te

∃ v2, mv2 = noerr v2 ∧ValTyp v2 t1
IH

By inversion of the value typing ValTyp v1 ( t arr t1 t2), we find
some te ’, ve ’, e1’ such that

v1 = v abs ve’ e1’ ExpTyp (t1 :: te ’) e1’ t2 WfEnv ve’ te’

By substituting for mv1, mv2, and v1, we now know

eval n ve e1 = done (noerr (v abs ve’ e1’) )

eval n ve e2 = done (noerr v2)

so the monadic sequencing in our assumption about eval lets us de-
duce

eval n (v2 :: ve ’) e1’ = done mv

To conclude the proof, we want to apply the induction hypothesis
again

eval n (v2 :: ve ’) e1’ = done mv
ExpTyp (t1 :: te ’) e1’ t2 WfEnv (v2 :: ve ’) (t1 :: te ’)

∃ v, mv = noerr v ∧ValTyp v t
IH

but we are still missing the well-formedness of the extended environ-
ment. We derive this last missing piece by

WfEnv ve’ te’ ValTyp v2 t1

WfEnv (v2 :: ve ’) (t1 :: te ’)
fa2 cons
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3.7 Variable Representations

Allthough we used DeBruijn Indices to model variables, the proof of the sound-
ness theorem has exactly the same structure for DeBruijn Levels and named vari-
ables. The only difference concerns the sublemmas of Lemma 2.4 (fa2 indexr),
which for DeBruijn levels require additional lemmas to compensate for missing
definitional equalities.

The reader is encouraged to compare the Coq formalizations via the diff

tool for more information:

– the file Chap 3 STLC VarIndices.v uses DeBruijn Indicies;

– the file Chap 3 STLC VarLevels.v uses DeBruijn Levels; and

– the file Chap 3 STLC VarNames.v uses explicit names in binders.
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Chapter 4

Subtyping

Subtyping introduces a binary relation v between types, such that if t v t′,
then any expression of type t can also be given type t′.

Subtyping is characteristically used in object-oriented languages, where it
plays a central part of class inheritance. For example, if a class Circle inherits
from a class Shape, then Circle is also considered a subtype of Shape, which
allows Circle s to be used in place of Shapes, e.g. in Java

Shape s = new Circle() ;

In this chapter, the formalization of the simply typed lambda calculus from
Chapter 3 is extended with subtyping. For a minimalistic scenario, the types
are only extended by the top type - the common supertype of all other types.

4.1 Syntax

The extension to the syntax is straightforward. All we need is to add a new
type t top to the type syntax:

Inductive Typ : Type :=
| t top : Typ
| t arr : Typ → Typ → Typ.

Inductive Exp : Type :=
| e var : N → Exp
| e app : Exp → Exp → Exp
| e abs : Exp → Exp.

4.2 Type System

To extend the type system, we first need to define the subtyping relation:

Inductive ExpSubTyp : Typ → Typ → Prop :=
| est top :
∀ t ,
ExpSubTyp t t top
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| est arr :
∀ t11 t12 t21 t22,
ExpSubTyp t21 t11 →
ExpSubTyp t12 t22 →
ExpSubTyp (t arr t11 t12) ( t arr t21 t22) .

– the est top constructor states that any type t is a subtype of t top;

– the est arr constructor states that a function type t arr t11 t12 is the
subtype of another function type t arr t21 t22, if t21 is a subtype of t11,
and t12 is a subtype of t22.

We then extend the typing relation by adding a new constructor for subtyp-
ing:

Definition TypEnv := List Typ.

Inductive ExpTyp : TypEnv → Exp → Typ → Prop :=
| et var :
∀ x te t1,
indexr x te = some t1 →
ExpTyp te (e var x) t1

| et app :
∀ te e1 e2 t1 t2,
ExpTyp te e1 ( t arr t1 t2) →
ExpTyp te e2 t1 →
ExpTyp te (e app e1 e2) t2

| et abs :
∀ te e t1 t2,
ExpTyp (t1 :: te) e t2 →
ExpTyp te (e abs e) ( t arr t1 t2)

| et sub :
∀ te e t1 t2,
ExpTyp te e t1 →
ExpSubTyp t1 t2 →
ExpTyp te e t2 .

The et sub constructor states that subtyping preserves the typing relation, i.e.
that if an expression e has type t1, and t1 is a subtype of t2, then e has also
type t2.
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4.3 Semantics

The semantics is precisely the same as for the STLC from Chapter 3:

Inductive Val : Type :=
| v abs : List Val → Exp → Val.

Definition ValEnv := List Val.

Fixpoint eval (n : N) (ve : ValEnv) (e : Exp) : CanTimeout (CanErr Val)
:=

match n with
| 0 ⇒ timeout
| S n ⇒

match e with
| e var x ⇒ done (indexr x ve)
| e abs e ⇒ done (noerr (v abs ve e))
| e app e1 e2 ⇒

’ v abs ve1’ e1’ ← eval n ve e1;
’ v2 ← eval n ve e2;
eval n (v2 :: ve1’) e1’

end
end.

4.4 Type Soundness

As subtyping allows expressions to be evaluated to values, which have a subtype
of the expression’s type, we extend the value typing, such that closures now not
only can have their arrow type t arr t1 t2, but also any larger type t:

Inductive ValTyp : Val → Typ → Prop :=
| vt abs :
∀ ve te e t1 t2 t ,
Forall2 ValTyp ve te →
ExpTyp (t1 :: te) e t2 →
ExpSubTyp (t arr t1 t2) t →
ValTyp (v abs ve e) t .

Definition WfEnv : ValEnv → TypEnv → Prop :=
Forall2 ValTyp.

The statement of the actual soundness theorem stays the same:

Theorem (Type Soundness).

∀ n e te ve res t ,
eval n ve e = some res →
ExpTyp te e t →
WfEnv ve te →
∃ v, res = some v ∧ ValTyp v t.
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type soundness

fa2 indexr est refl vt widen

est transfa2 length indexr extend

indexr max beq eq iff

Figure 4.1: Proof Graph for STLC<: Soundness

4.5 Type Soundness Proof

Figure 4.1 shows the proof graph for the type soundness theorem. The only
dependencies not covered in the framework from Chapter 2 are:

– est refl and est trans, which state the reflexivity and transitivity of the
subtyping relation; and

– vt widen, which states that if a value v has a type t, then v has also any
supertype of t.

We start with the type soundness proof to motivate the lemmas:

Theorem 4.1 (Type Soundness).

∀ n e te ve res t ,
eval n ve e = some res →
ExpTyp te e t →
WfEnv ve te →
∃ v, res = some v ∧ ValTyp v t.

Proof. We start by induction over the number of steps n:

– Case 0. Contradiction; same as for the STLC.

– Case n + 1. In contrast to the STLC, we proceed by induction over the
typing derivation ExpTyp te e t instead of simple case analysis, as we need
the induction hypothesis for the new subtyping rule.

– Case et var . Same as for the STLC.

– Case et abs. Same as for the STLC, except that to prove ValTyp
v ( t arr t1 t2) in the last step, we need an additional assumption

about subtyping, as the vt abs constructor changed:

WfEnv ve te ExpTyp (t1 :: te) e’ t2
ExpSubTyp (t arr t1 t2) ( t arr t1 t2)

ValTyp (v abs ve e ’) ( t arr t1 t2)
vt abs

This assumption is a special case of the reflexivity of subtyping proved
in Lemma 4.2 (est refl).

– Case et app. Same as for the STLC, except that the inversion of the
closure’s value typing now doesn’t give us

ExpTyp (t1 :: te ’) e1’ t2

but instead some t1 ’, t2 ’ such that
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ExpTyp (t1’ :: te ’) e1’ t2’ ∧
ExpSubTyp t1 t1’ ∧
ExpSubTyp t2’ t2

This leads to problems in the last proof step, where we want to proof
well-formedness of the extended closure environment:

WfEnv ve’ te’ ValTyp v2 t1’

WfEnv (v2 :: ve ’) ( t1’ :: te ’)
fa2 cons

Due to the subtyping, the environment is now extended by a subtype
t1’ of t1 instead of t1 itself. This in turn requires us to proof ValTyp
v2 t1’ instead of just ValTyp v2 t1, which we would have already

known. We introduce Lemma 4.1 (vt widen) to show that

ValTyp v2 t1 ExpSubTyp t1 t1’

ValTyp v2 t1’
vt widen

– Case et sub. By definition of et sub, we have some t ’ such that

ExpSubTyp t’ t ExpTyp te e t ’

Our goal is to show

∃ v : Val, mv = noerr v ∧ ValTyp v t

We apply the inner induction hypothesis to our assumptions:

eval (S n) ve e = done mv WfEnv ve te

∃ v, mv = noerr v ∧ValTyp v t ’
IH’

We conclude by using Lemma 4.1 (vt widen):

ValTyp v t ’ ExpSubTyp t’ t

ValTyp v t
vt widen
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We first prove that value typing is preserved under subtyping:

Lemma 4.1 (vt widen).

∀ v t1 t2,
ValTyp v t1 →
ExpSubTyp t1 t2 →
ValTyp v t2.

Proof. By inverting and reassembling the value typing using Lemma 4.3 (est trans)
to extend the contained subtyping relations.

We then prove that subtyping is both reflexive and transitive. As the proofs
are not specific to the definitional interpreter semantics, we only outline them.

Lemma 4.2 (est refl).

∀ t ,
ExpSubTyp t t.

Proof. Straightforward induction over the type t.

Lemma 4.3 (est trans).

∀ t1 t2 t3,
ExpSubTyp t1 t2 →
ExpSubTyp t2 t3 →
ExpSubTyp t1 t3.

Proof. Straightforward induction over the sum of the sizes of both subtyping
derivation trees.
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Chapter 5

Substructural Types

Substructural type systems impose restrictions on how often variables are al-
lowed to be used.

The most common classes of substructural type systems are

– unrestricted, allowing variables to be used arbitrarily often;

– linear, requiring variables to be used exactly once;

– affine, requiring variables to be used at most once; and

– relevant, requiring variables to be used at least once.

Those restrictions, especially linear and affine types, turn out to be useful in
a variety of API’s, where certain steps of a protocol are not allowed to happen
multiple times, e.g. freeing memory, closing of a file handle, etc.

Rust is probably the most famous example of a real world language employ-
ing substructural typing. In Rust, affine types are used to model ownership,
and unrestricted types are used for references[17].

In this chapter, the formalization of the simply typed lambda calculus from
Chapter 3 is extended with substructural typing, such that both unrestricted
and affine lambda abstractions are possible.

5.1 Syntax

The syntax extension is straightforward: both t arr and e abs are annotated by
a multiplicity Mul, which can be either aff ine or unrestricted.

Inductive Mul : Type :=
| aff : Mul
| unr : Mul.

Inductive Typ : Type :=
| t void : Typ
| t arr : Mul → Typ → Typ → Typ.

Inductive Exp : Type :=
| e var : N → Exp
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| e app : Exp → Exp → Exp
| e abs : Mul → Exp.

5.2 Type System

The type system extensions are relatively subtle, as the form of the typing
relation remains the same, and we have no new syntactic forms to care for.

However, the restriction on variable usage raises two new concerns:

– when typing applications e app e1 e2, then it is no longer correct to simply
propagate the type environment to both sub-expressions, as this would
allow both e1 and e2 to make use of the same variable that might be
restricted.

– when typing unrestricted abstractions e abs unr e, then it is no longer
correct to simply capture the whole environment, as the environment may
contain restricted variables, which may be used multiple times, as the
unrestricted abstraction is allowed to be called multiple times.

To cover the first concern, we introduce the Split ting of type environments,
such that the et app constructor can be stated as

| et app :
∀ te te1 te2 e1 e2 t1 t2 m,
Split te te1 te2 →
ExpTyp te1 e1 ( t arr m t1 t2) →
ExpTyp te2 e2 t1 →
ExpTyp te (e app e1 e2) t2

To cover the second concern, we introduce a restrict function that removes
all affine variables from the type environment.

We define Split and restrict , such that entries are not actually removed
from the type environment, but rather marked as inaccessible. This greatly
simplifies the proofs, as variables keep their meaning as DeBruijn Levels under
splitting and restriction, and thus do not need to be renamed.

5.2.1 Type Environments

We define a type environment to be a list of types annotated with multiplicity
and accessibility:

Inductive Acc : Type :=
| here : Acc
| gone : Acc.

Inductive Bind : Type :=
| bind : Acc → Mul → Typ → Bind.

Definition TypEnv := List Bind.
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5.2.2 Splitting Type Environments

We define the splitting of the type environment as a tertiary relation between
the input environment and two output environments:

Inductive Split : TypEnv → TypEnv → TypEnv → Prop :=
| sp nil :

Split [] [] []
| sp gone :
∀ bs bs1 bs2 t m,
Split bs bs1 bs2 →
Split (bind gone m t :: bs)

(bind gone m t :: bs1) (bind gone m t :: bs2)
| sp left :
∀ bs bs1 bs2 t ,
Split bs bs1 bs2 →
Split (bind here aff t :: bs)

(bind here aff t :: bs1) (bind gone aff t :: bs2)
| sp right :
∀ bs bs1 bs2 t ,
Split bs bs1 bs2 →
Split (bind here aff t :: bs)

(bind gone aff t :: bs1) (bind here aff t :: bs2)
| sp both :
∀ bs bs1 bs2 t ,
Split bs bs1 bs2 →
Split (bind here unr t :: bs)

(bind here unr t :: bs1) (bind here unr t :: bs2).

– the sp nil constructor states that the empty environment can be split into
two empty environments;

– the sp gone constructor states that if an entry is marked as gone, then it
stays gone in both output environments;

– the sp left and sp right constructors state that if an entry is marked as
affine, then it can be split into one of the output environments, but must
be marked gone in the other; and

– the sp both constructor states that if an entry is marked as unrestricted,
then it may appear in both output environments.

5.2.3 Restricting Type Environments

We define the restriction of a type environment to simply mark all entries, that
have affine multiplicity, as gone:

Definition restrict entry (b : Bind) : Bind :=
match b with
| bind here aff t ⇒ bind gone aff t
| b ⇒ b
end.
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Definition restrict (m : Mul) (bs : TypEnv) : TypEnv :=
match m with
| unr ⇒ map restrict entry bs
| aff ⇒ bs
end.

5.2.4 Typing Relation

We first define a kinding relation that relates types with their multiplicities:

Inductive TypKind : Typ → Mul → Prop :=
| tk void : TypKind t void unr
| tk arr : ∀ m t1 t2, TypKind (t arr m t1 t2) m.

– the tk void constructor states that the t void type is of unrestricted kind;
and

– the tk arr constructor states that an arrow type t arr m t1 t2 has the
multiplicity of its annotation m as its kind.

We then extend the typing relation from the STLC as follows:

Inductive ExpTyp : TypEnv → Exp → Typ → Prop :=
| et var :
∀ x te t m,
indexr x te = some (bind here m t ) →
ExpTyp te (e var x) t

| et app :
∀ te te1 te2 e1 e2 t1 t2 m,
Split te te1 te2 →
ExpTyp te1 e1 ( t arr m t1 t2) →
ExpTyp te2 e2 t1 →
ExpTyp te (e app e1 e2) t2

| et abs :
∀ te e t1 t2 m m1,
TypKind t1 m1 →
ExpTyp ( bind here m1 t1 :: restrict m te ) e t2 →
ExpTyp te (e abs m e) ( t arr m t1 t2) .

– the et var constructor remains the same, except that the type environment
entries now contain additional, irrelevant information;

– the et app constructor now requires the type environment te to be split
between both subderivations; and

– the et abs constructor now forbids the use of affine variables in unre-
stricted abstractions by restricting the type environment accordingly.
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5.3 Semantics

The semantics remains identical to the STLC, except that closure values now
also carry their multiplicity:

Inductive Val : Type :=
| v abs : List Val → Mul → Exp → Val.

Definition ValEnv := List Val.

Fixpoint eval (n : N) (ve : ValEnv) (e : Exp) : CanTimeout (CanErr Val)
:=

match n with
| 0 ⇒ timeout
| S n ⇒

match e with
| e var x ⇒ done (indexr x ve)
| e abs m e ⇒ done (noerr (v abs ve m e))
| e app e1 e2 ⇒

’ v abs env1’ m’ e1’ ← eval n ve e1;
’ v2 ← eval n ve e2;
eval n (v2 :: env1’) e1’

end
end.

5.4 Type Soundness

The extension to the value typing is straightforward: closures and function types
are now both annotated with multiplicities that have to match. As the structure
of type environments has changed, we also need to make small changes to ignore
the annotations, for which we define a function bind typ that extracts the Typ
of an annotated type environment entry.

Definition bind typ (b : Bind) : Typ :=
match b with
| bind a m t ⇒ t
end.

Inductive ValTyp : Val → Typ → Prop :=
| vt abs :
∀ ve te e t1 t2 m m1,
Forall2 (λ v b ⇒ ValTyp v (bind typ b)) ve te →
TypKind t1 m1 →
ExpTyp ( bind here m1 t1 :: te) e t2 →
ValTyp (v abs ve m e) ( t arr m t1 t2) .

Definition WfEnv : ValEnv → TypEnv → Prop :=
Forall2 (λ v b ⇒ ValTyp v (bind typ b)) .

The statement of type soundness remains unchanged:
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type soundness

fa2 indexrsplit preserves wfrestr preserves et

split restr restr preserves index restr append comm restr unr idempotent

split append comm split restr’ split append comm back

fa2 length indexr extend

indexr max beq eq iff

Figure 5.1: Proof Graph for STLC with Substructural Types Soundness

Theorem (Type Soundness).

∀ n e te ve res t ,
eval n ve e = some res →
ExpTyp te e t →
WfEnv ve te →
∃ v a, res = some v ∧ ValTyp v t.

5.5 Type Soundness Proof

Figure 5.1 shows the proof graph for the type soundness theorem. The only
dependencies not covered in the framework from Chapter 2 are:

– split preserves wf, which is used in the e abs case, and states that if well-
formed environments WfEnv ve te are split, then both halves are again
well-formed; and

– restr preserves et, which is used in the e app case, and states that if an
expression has a typing in an restricted type environment restrict te,
then it has the same type in te.

We start with the type soundness proof to motivate the lemmas:

Theorem 5.1 (Type Soundness).

∀ n e te ve res t ,
eval n ve e = some res →
ExpTyp te e t →
WfEnv ve te →
∃ v a, res = some v ∧ ValTyp v t.

Proof. We start by induction over the number of steps n:

– Case 0. Contradiction; same as for the STLC.

– Case n + 1. We proceed by case analysis on the typing derivation ExpTyp te e t:

– Case et var . Same as for the STLC.

– Case et abs. In contrast to the STLC, the construction of the value
typing with vt abs now requires a proof for

ExpTyp (bind here m1 t1 :: restrict m te) e t2

ExpTyp (bind here m1 t1 :: te) e t2

instead of having the conclusion already as an assumption.
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This is due to the type system changes in et abs.

We cover this case with Lemma 5.2 (restr preserves typing).

The rest of the proof remains the same.

– Case et app. In contrast to the STLC, et app now splits the type
environment te between both subexpressions e1 and e2:

Split te te1 te2 ExpTyp te1 e1 ( t arr t1 t2) ExpTyp te2 e2 t1

To apply the induction hypothesis to both subexpressions, we now
need WfEnv evidence with respect to te1 and te2:

eval n ve e1 = done mv1
ExpTyp te1 e1 ( t arr t1 t2) WfEnv ve te1

∃ v1, mv1 = noerr v1 ∧ValTyp v1 ( t arr t1 t2)
IH

eval n ve e2 = done mv2
ExpTyp te2 e2 t1 WfEnv ve te2

∃ v2, mv2 = noerr v2 ∧ValTyp v2 t1
IH

We get the missing WfEnv evidence from Lemma 5.1 (split preserves wf).

WfEnv ve te Split te te1 te2

WfEnv ve te1 WfEnv ve te2
split preserves wf

The rest of the proof remains the same.

5.5.1 Splitting of Environments

Proving that environment splitting preserves well-formedness is simple, requir-
ing no further sub-lemmas:

Lemma 5.1 (split preserves wf).

∀ ve te te1 te2,
WfEnv ve te →
Split te te1 te2 →
WfEnv ve te1 ∧ WfEnv ve te2.

Proof. Straightforward induction over the environment splitting.

5.5.2 Restricted Typing

While it is intuitively clear, that undeleting entries from the type environment
preserves the typing relation, the mechanization requires 4 lemmas. As their
proofs are not very interesting, we merely outline them for reference.

Lemma 5.2 (restr preserves typing).

∀ m e t te te ’,
ExpTyp (te’ ++ restrict m te) e t →
ExpTyp (te’ ++ te) e t.
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Proof. We start by case analysis on m:

– Case aff . Immediate, as restrict aff is just the identity.

– Case unr. We proceed by induction over the typing derivation:

– Case et var . Follows from Lemma 5.3 (restr preserves indexr).

– Case et abs. Follows from Lemma 5.4 (restr unr idempotent) and
Lemma 5.5 (restr append comm).

– Case et app. Follows from Lemma 5.6 (split restr).

Lemma 5.3 (restr preserves indexr).

∀ (te te ’ : TypEnv) (i : N) m t ,
indexr i (te ’ ++ restrict unr te) = some (bind here m t) →
indexr i (te ’ ++ te) = some (bind here m t).

Proof. Straightforward induction over te ’ .

Lemma 5.4 (restr unr idempotent).

∀ (te : TypEnv) m,
restrict m ( restrict unr te) = restrict unr te .

Proof. Case analysis on m, followed by induction on te in the affine case.

Lemma 5.5 (restr append comm).

∀ (te1 te2 : TypEnv) m,
restrict m (te1 ++ te2) = restrict m te1 ++ restrict m te2.

Proof. Case analysis on m, followed by induction on te1 in the affine case.

Lemma 5.6 (split restr).

∀ ( i1 i2 l r : TypEnv),
Split ( i1 ++ map restrict entry i2) l r →
∃ l1 r1 l2 r2 ,

Split ( i1 ++ i2) (l1 ++ l2) (r1 ++ r2) ∧
l1 ++ map restrict entry l2 = l ∧
r1 ++ map restrict entry r2 = r.

Proof. We first apply Lemma 5.7 (split append comm), then Lemma 5.9 (split restr),
and finally Lemma 5.8 (split append comm back).

Lemma 5.7 (split append comm).

∀ ( i1 i2 l r : TypEnv),
Split ( i1 ++ i2) l r →
∃ l1 r1 l2 r2 ,

Split i1 l1 r1 ∧
Split i2 l2 r2 ∧
l1 ++ l2 = l ∧
r1 ++ r2 = r.
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Proof. Straightforward induction over te1.

Lemma 5.8 (split append comm back).

∀ ( i1 l1 r1 i2 l2 r2 : TypEnv),
Split i1 l1 r1 →
Split i2 l2 r2 →
Split ( i1 ++ i2) (l1 ++ l2) (r1 ++ r2).

Proof. Straightforward induction over te1.

Lemma 5.9 (split restr’).

∀ (te te1 te2 : TypEnv),
Split (map restrict entry te) te1 te2 →
∃ te1’ te2 ’,

Split te te1’ te2’ ∧
map restrict entry te1’ = te1 ∧
map restrict entry te2’ = te2.

Proof. Straightforward induction over te.
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Chapter 6

Mutable References

In this chapter, the formalization of the simply typed lambda calculus from
Chapter 3 is extended with mutable references.

This extension allows for the creation, observation, and mutation of so called
locations, i.e. values representing references to other values. As such, mutable
references are at the core of any imperative programming language.

6.1 Syntax

We extend the syntax as follow:

Inductive Typ : Type :=
| t void : Typ
| t arr : Typ → Typ → Typ
| t unit : Typ
| t ref : Typ → Typ.

Inductive Exp : Type :=
| e var : N → Exp
| e app : Exp → Exp → Exp
| e abs : Exp → Exp
| e ref : Exp → Exp
| e get : Exp → Exp
| e set : Exp → Exp → Exp.

There are three new forms of expressions:

– e ref e introduces a new reference to the value of e;

– e get e retrieves the value of a reference e;

– e set e1 e2 reassigns a reference e1 the value of e2.

There are two new forms of types:

– t unit is the type with only a single inhabitant, and used as a return type
for e set ; and

– t ref t is the type of references to values of type t created through e ref .
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6.2 Type System

Extending the type system with mutable references is straightforward. The
typing relation keeps its form as a tertiary relation between type environments,
expressions, and types, and the rules for the old expressions remain the same.
For each of the three new expressions, we add one new rule to the typing relation:

Definition TypEnv := List Typ.

Inductive ExpTyp : TypEnv → Exp → Typ → Prop :=
| et var :
∀ x te t1,
indexr x te = some t1 →
ExpTyp te (e var x) t1

| et app :
∀ te e1 e2 t1 t2,
ExpTyp te e1 ( t arr t1 t2) →
ExpTyp te e2 t1 →
ExpTyp te (e app e1 e2) t2

| et abs :
∀ te e t1 t2,
ExpTyp (t1 :: te) e t2 →
ExpTyp te (e abs e) ( t arr t1 t2)

| et ref :
∀ te e t ,
ExpTyp te e t →
ExpTyp te ( e ref e) ( t ref t)

| et get :
∀ te e t ,
ExpTyp te e ( t ref t) →
ExpTyp te (e get e) t

| et set :
∀ te e1 e2 t ,
ExpTyp te e1 ( t ref t) →
ExpTyp te e2 t →
ExpTyp te (e set e1 e2) t unit .

– The et ref constructor states that if an expression e has type t, then the
reference e ref e to the value of e has type t ref t.

– The et get constructor states that if an expression e has type t ref t,
then extracting the referenced value via e get e has type t.

– The et set constructor states that if an expression e1 has type t ref t, and
an expression e2 has type t, then updating the reference value from e1 to
point to the value from e2 via e set e1 e2 has type Unit, i.e. is welltyped,
but does not return any interesting result, as all that is supposed to happen
is the sideeffect of the store update.
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6.3 Semantics

We start by adding two new forms of values:

Inductive Val :=
| v abs : List Val → Exp → Val
| v unit : Val
| v loc : N → Val.

– v unit is the single inhabitant of the t unit type; and

– v loc n represents the reference cell created by the n-th use of e ref .

To evaluate an expression e get e, where e evaluates to some location v loc
n, we need to be able to access the value referenced by that location. Hence, we
parameterize the semantics with a so called value store, that records the values
referenced by location values. Analogously to value environments, we represent
that store as a list of values indexed by their location:

Definition ValEnv := List Val.
Definition ValStore := List Val.

The definitional interpreter is extended with a value store as an additional
argument and return value, allowing the value store to be threaded through the
evaluation of subexpressions:

Fixpoint eval (n : N) (ve : ValEnv) (vs : ValStore) (e : Exp) :
CanTimeout (CanErr (Val ∗ ValStore ))

:=
match n with
| 0 ⇒

timeout
| S n ⇒

match e with
| e var x ⇒

done ( mmap (λ v ⇒ (v, vs)) ( indexr x ve))
| e abs e ⇒

done (noerr (v abs ve e, vs ))
| e app e1 e2 ⇒

’( v abs ve1’ e1 ’, vs ) ← eval n ve vs e1;
’(v2, vs ) ← eval n ve vs e2;
eval n (v2 :: ve1’) vs e1’

| e ref e ⇒
’(v, vs) ← eval n ve vs e;
done (noerr ( v loc (length vs) , v :: vs))

| e get e ⇒
’( v loc l , vs) ← eval n ve vs e;
done (mmap (λ v ⇒ (v, vs)) (indexr l vs))

| e set e1 e2 ⇒
’( v loc l , vs) ← eval n ve vs e1;
’(v2, vs) ← eval n ve vs e2;
done (noerr ( v unit , update l v2 vs))
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end
end.

– the old cases are only adjusted to propagate the value store through the
evaluation: in the e var and e abs cases, the value store is simply returned
unmodified, and in the e app case, the value store is threaded through the
evaluation of both subexpressions;

– expressions of form e ref e are evaluated by extending the value store by
the value of e, and returning the location of that value. Recall, that we use
right-indexing to access a value store vs, as we did for DeBruijn Levels, so
the value v can be accessed by the largest list index length vs.

– expressions of form e get e are evaluated by first evaluating e to some
location v loc l and new store vs, and then returning the value referenced
by l .

– expressions of form e set e1 e2 are evaluated by first evaluating e1 to
some location v loc l and e2 to some value v2, and then updating the
store such that l references v2.

6.4 Type Soundness

We start by extending the value typing. To assign a type to a location v loc l ,
we need to know the type of the value referenced by l .

For this purpose, we introduce a type store as a list of types, analogously to
type environments:

Definition TypStore := List Typ.

We then extend the value typing as follows:

Inductive ValTyp : TypStore → Val → Typ → Prop :=
| vt abs :
∀ ts ve te e t1 t2,
Forall2 (ValTyp ts ) ve te →
ExpTyp (t1 :: te) e t2 →
ValTyp ts (v abs ve e) ( t arr t1 t2)

| vt unit :
∀ ts ,
ValTyp ts v unit t unit

| vt loc :
∀ ts l t ,
indexr l ts = some t →
ValTyp ts ( v loc l ) ( t ref t) .

Definition WfEnv (ve : ValEnv) (te : TypEnv) (ts : TypStore) : Prop :=
Forall2 (ValTyp ts ) ve te .

– the vt abs constructor remains independent from the type store, and only
propagates the type store to the typing of the captured environment;
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– the vt unit constructor simply states that v unit has type t unit ; and

– the vt loc constructor states that a location v loc l has type t if the type
store recorded that this is the case.

Next, we state a well-formedness relation between value stores and type
stores, as we did with WfEnv for environments:

Definition WfStore (vs : ValStore) (ts : TypStore) : Prop :=
Forall2 (ValTyp ts) vs ts .

As the type stores used in the value typing get larger during evaluation, we
need to state when a type store ts1 is a substore of another type store ts2, in
the sense that all locations present in ts1, have the same type in both ts1 and
ts2. We define this relation simple as the list-suffix-relation from Chapter 2:

Notation SubStore := IsSuffixOf.

We are now equipped to state type soundness:

Theorem (Type Soundness).

∀ n e te ve vs ts mv t,
eval n ve vs e = done mv →
ExpTyp te e t →
WfStore vs ts →
WfEnv ve te ts →
∃ v vs ’ ts ’ ,

mv = noerr (v, vs ’ ) ∧
WfStore vs’ ts ’ ∧
SubStore ts ts ’ ∧
ValTyp ts ’ v t .
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type soundness

fa2 indexr fa2 update l prefix refl prefix trans indexr prefix wfenv substore wfstore extend

fa2 length indexr extend

indexr max beq eq iff

wfstore extend inner

valtyp substore

Figure 6.1: Proof Graph for STLC + Mutable References Soundness

6.5 Type Soundness Proof

Figure 6.1 shows the proof graph for the type soundness theorem. The only
dependencies not covered in the framework from Chapter 2 are:

– wfenv substore, which states that well-formed environments WfEnv ve te
ts1 stay well-formed, if ts1 is replaced by a larger store ts2; and

– wfstore ex tend, which states that a well-formed store WfStore vs ts can be
extended by a value typing ValTyp ts v t to WfStore (v :: vs) (t :: ts).

We start with the type soundness proof to motivate the lemmas:

Theorem 6.1 (Type Soundness).

∀ n e te ve vs ts mv t,
eval n ve vs e = done mv →
ExpTyp te e t →
WfStore vs ts →
WfEnv ve te ts →
∃ v vs ’ ts ’,

mv = noerr (v, vs ’) ∧
WfStore vs’ ts ’ ∧
SubStore ts ts ’ ∧
ValTyp ts ’ v t .

Proof. We start by induction over the number of steps n:

– Case 0. Contradiction; same as for the STLC.

– Case n + 1. We proceed by case analysis on the typing derivation ExpTyp te e t:

– Case et var . By definition of et var , we have some x such that

e = e var x indexr x te = noerr t.

As before, this allows us to apply Lemma 2.4 ( fa2 indexr )

WfEnv ts ve te indexr x te = noerr t

∃ v, indexr x ve = noerr v ∧ ValTyp ts v t
fa2 indexr

By definition of eval and mmap, and substitution of noerr v for indexr
x ve, the assumption eval (n + 1) ve vs ( e var x) = done mv re-

duces to

done (noerr (v, vs)) = done mv

so we substitute for mv, instantiate the existential variables of our
goal with v := v, vs ’ := vs, ts ’ := ts and are left to prove
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WfStore vs ts ∧ SubStore ts ts ∧ ValTyp ts v t

The first and last conjuncts follow by assumption and as the con-
clusion from fa2 indexr . The second conjunct follows directly from
Lemma 2.6 (suffix refl).

– Case et abs. Same as for the STLC. As in the et var case, the value
store doesn’t change, so we use suffix refl to establish Substore ts
ts.

By definition of et abs, we have some e ’, t1 , t2 such that

e = e abs e’ t = t arr t1 t2 ExpTyp (t1 :: te) e’ t2

By definition of eval , the assumption eval (n + 1) ve vs (e abs e ’)
= done mv reduces to

done (noerr (v abs ve e ’, vs)) = done mv

Thus, by substituting for mv, we are left to prove

∃ v, v abs ve e’ = v ∧ ValTyp v (t arr t1 t2)

so we choose v = v abs ve e’ and construct the value typing from our
assumptions:

WfEnv ve te ExpTyp (t1 :: te) e’ t2

ValTyp (v abs ve e ’) ( t arr t1 t2)
vt abs

– Case et app. By definition of et app, we have some e1, e2, t1, t2
such that

e = e app e1 e2 t = t2 ExpTyp te e1 ( t arr t1 t2) ExpTyp te e2 t1

By definition of eval , the assumption

eval (n + 1) ve vs (e app e1 e2) = done mv

reduces to

’ (v abs ve’ e1 ’, vs) ← eval n ve vs e1;
’ (v2, vs) ← eval n ve vs e2;
eval n (v2 :: ve ’) vs e1’ = done mv

As before, we observe that there must be some mv1 and mv2 such
that

eval n ve e1 = done mv1 eval n ve e2 = done mv2

We are now equipped to apply our induction hypothesis to the eval-
uation of both subexpressions:

eval n ve vs e1 = done mv1
ExpTyp te e1 ( t arr t1 t2) WfStore vs ts WfEnv ts ve te

∃ v1 vs1 ts1 , mv1 = noerr (v1, vs1) WfStore vs1 ts1
SubStore ts ts1 ValTyp ts1 v1 ( t arr t1 t2)

IH
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eval n ve vs1 e2 = done mv2
ExpTyp te e2 t1 WfStore vs1 ts1 WfEnv ts1 ve te

∃ v2 vs2 ts2 , mv2 = noerr (v2, vs2) WfStore vs2 ts2
SubStore ts1 ts2 ValTyp ts2 v2 t2

IH

For the second application, we get the WfEnv ts1 ve te from WfEnv
ts ve te and SubStore ts ts1 using Lemma 6.4 (wfenv substore).

WfEnv ts ve te SubStore ts ts1

WfEnv ts1 ve te
wfenv substore

By inversion of the value typing ValTyp ts1 v1 ( t arr t1 t2), we find
some te ’, ve ’, e1’ such that

v1 = v abs ve’ e1’ ExpTyp (t1 :: te ’) e1’ t2 WfEnv ve’ te’

By substituting for mv1, mv2, and v1, we now know

eval n ve e1 = done (noerr (v abs ve’ e1’) )

eval n ve e2 = done (noerr v2)

so the monadic sequencing in our assumption about eval lets us de-
duce

eval n (v2 :: ve ’) e1’ = done mv

To conclude the proof, we want to apply the induction hypothesis
again

eval n (v2 :: ve ’) e1’ = done mv
ExpTyp (t1 :: te ’) e1’ t2 WfEnv (v2 :: ve ’) (t1 :: te ’)

∃ v, mv = noerr v ∧ValTyp v t
IH

but we are still missing the well-formedness of the extended environ-
ment. We derive this last missing piece by

WfEnv ve’ te’ ValTyp v2 t1

WfEnv (v2 :: ve ’) (t1 :: te ’)
fa2 cons

– Case et ref . By definition of et ref , we have some e ’, t ’ such that

e = e ref e’ t = t ref t ’ ExpTyp te e’ t ’

By definition of eval , the assumption

eval (n + 1) ve vs ( e ref e ’) = done mv

reduces to

’ (v ’, vs ’) ← eval n ve vs e ’;
done (noerr ( v loc (length vs ’) , v’ :: vs ’) ) = done mv
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As before, we observe that there must be some mv’ such that

eval n ve vs e’ = done mv’

so we can apply the induction hypothesis as

eval n ve vs e’ = done mv’
ExpTyp te e’ t ’ WfStore vs ts WfEnv ts ve te

∃ v’ vs ’ ts ’, mv’ = noerr (v ’, vs ’) WfStore vs’ ts ’
SubStore ts ts ’ ValTyp ts ’ v’ t ’

IH

By substituting for mv’, the assumption about evaluation further
reduces to

done (noerr ( v loc (length vs ’) , v’ :: vs ’) ) = done mv

By substituting for mv, and instantiating the existential variables of
our goal with v := v loc (length vs ’) , vs ’ := v’ :: vs ’ , ts ’ := t ’
:: ts ’ , we are left to prove

WfStore (v’ :: vs ’) (t ’ :: ts ’) ∧
SubStore ts (t ’ :: ts ’) ∧
ValTyp (t’ :: ts ’) v’ ( t ref t ’)

The first conjunct is proved via Lemma 6.1 (wfstore extend):

WfStore vs’ ts ’ ValTyp ts ’ v’ t ’

WfStore (v’ :: vs ’) (t ’ :: ts ’)
wfstore extend

The second conjunct follows via Lemma 2.7 (suffix trans) from the
assumptions.

The third conjunct follows via Lemma 2.3 (fa2 length).

– Case et get . By definition of et ref , we have some e’ such that

e = e get e’ ExpTyp te e’ ( t ref t)

By definition of eval , the assumption

eval (n + 1) ve vs (e get e ’) = done mv

reduces to

’ (v ’, vs ’) ← eval n ve vs e ’;
done (noerr ( v loc (length vs ’) , v’ :: vs)) = done mv

As before, we observe that there must be some mv’ such that

eval n ve vs e’ = done mv’

so we can apply the induction hypothesis as

eval n ve vs e’ = done mv’
ExpTyp te e’ ( t ref t) WfStore vs ts WfEnv ts ve te

∃ v’ vs ’ ts ’, mv’ = noerr (v ’, vs ’) WfStore vs’ ts ’
SubStore ts ts ’ ValTyp ts ’ v’ ( t ref t)

IH
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By inversion of the value typing ValTyp ts ’ v’ ( t ref t), we find
some n such that

v’ = v loc n indexr n ts ’ = some t

We then apply Lemma 2.4 on the second result, yielding

WfStore vs’ ts ’ indexr n ts ’ = some t

∃ v, indexr n vs ’ = some v ∧ValTyp ts’ v t
fa2 indexr

By substituting for v, the assumption about evaluation reduces fur-
ther to

done (noerr (v, vs ’) ) = done mv

and after substituting and instantiating we are left to prove

WfStore vs’ ts ’ ∧ SubStore ts ts ’ ∧ ValTyp ts’ v t

which we have already done.

– Case et set . By definition of et set , we have some e1, e2, t ’ such
that

e = e set e1 e2 t = Unit ExpTyp te e1 ( t ref t ’) ExpTyp te e2 t ’

By definition of eval , the assumption

eval (n + 1) ve vs ( e set e1 e2) = done mv

reduces to

’ ( v loc l , vs) ← eval n ve vs e1;
’ (v2, vs) ← eval n ve vs e2;
done (noerr ( v unit , update l v2 vs)) = done mv

As before, we observe that there must be some mv1 and mv2 such
that

eval n ve vs e1 = done mv1 eval n ve vs e2 = done mv2

We are now equipped to apply our induction hypothesis to the eval-
uation of both subexpressions:

eval n ve vs e1 = done mv1
ExpTyp te e1 ( t ref t ’) WfStore vs ts WfEnv ts ve te

∃ v1 vs1 ts1 , mv1 = noerr (v1, vs1) WfStore vs1 ts1
SubStore ts ts1 ValTyp ts1 v1 ( t ref t ’)

IH

eval n ve vs1 e2 = done mv2
ExpTyp te e2 t ’ WfStore vs1 ts1 WfEnv ts1 ve te

∃ v2 vs2 ts2 , mv2 = noerr (v2, vs2) WfStore vs2 ts2
SubStore ts1 ts2 ValTyp ts2 v2 t ’

IH
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For the second application, we get the WfEnv ts1 ve te from WfEnv
ts ve te and SubStore ts ts1 using Lemma 6.4 (wfenv substore).

WfEnv ts ve te SubStore ts ts1

WfEnv ts1 ve te
wfenv substore

By inversion of the value typing ValTyp ts1 v1 ( t ref t ’) , we find
some l such that

v1 = v loc l indexr l ts1 = some t’

By substituting for mv1, mv2, and v1, we now know

eval n ve e1 = done (noerr ( v loc l ))

eval n ve e2 = done (noerr v2)

so the monadic sequencing in our assumption about eval lets us de-
duce

done (noerr ( v unit , update l v2 vs2)) = done mv

By substituting for mv and instantiating v := v unit , vs ’ := update
l v2 vs2, ts ’ := ts2, we are left to prove

WfStore (update l v2 vs2) ts2 ∧
SubStore ts ts2 ∧
ValTyp ts2 v unit t unit

To prove the first conjunct WfStore (update l v2 vs2) ts2, we use
Lemma 2.5 (fa2 update l) and Lemma 2.8 (indexr suffix).

The second conjunct SubStore ts ts2 follows simply from Lemma 2.7 (suffix trans)
applied to SubStore ts ts1 and SubStore ts1 ts2 which resulted from
the induction hypotheses.

The third conjunct ValTyp ts2 v unit t unit follows directly from the
vt unit constructor.
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Lemma 6.1 (wfstore extend).

∀ (v : Val) (vs : ValStore) (t : Typ) (ts : TypStore),
WfStore vs ts →
ValTyp ts v t →
WfStore (v :: vs) (t :: ts) .

Proof. Follows directly from Lemma 6.3 (valtype substore) and
Lemma 6.2 (wfstore extend inner).

Lemma 6.2 (wfstore extend inner).

∀ (ts ts ’ : TypStore) (vs : ValStore) (t : Typ),
Forall2 (ValTyp ts ’) vs ts →
Forall2 (ValTyp (t :: ts ’) ) vs ts .

Proof. Straightforward induction over the Forall2 evidence using
Lemma 6.3 (valtype substore).

The remaining two lemmas state that value typings ValTyp and well-formed
environments WfEnv persist to hold for larger TypStores:

Lemma 6.3 (valtype substore).

∀ (v : Val) (t : Typ) (ts1 ts2 : TypStore),
ValTyp ts1 v t →
SubStore ts1 ts2 →
ValTyp ts2 v t .

Lemma 6.4 (wfenv substore).

∀ (te : TypEnv) (ve : ValEnv) (ts1 ts2 : TypStore),
WfEnv ve te ts1 →
SubStore ts1 ts2 →
WfEnv ve te ts2.

As ValTyp and WfEnv have a mutually inductive structure, we need to prove
both lemmas together1:

Proof. Straightforward mutual induction over the WfEnv evidence from wfenv substore
together with the ValType evidence from valtype substore . The case of a loca-

tion value v loc l requires Lemma 2.8 (indexr suffix) from the framework.

1In our Coq formalization, we were not able to derive the correct mutual induction schemes
with a definition of WfEnv based on Forall2 . We worked around this issue by representing
WfEnv with a more specialized, but structurally isomorphic type. See the implementation for
more details.
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Chapter 7

Parametric Polymorphism

In this chapter, the formalization of the simply typed lambda calculus from
Chapter 3 is extended with parametric polymorphism resulting in a formaliza-
tion of System F[12], also known as the second-order lambda calculus or Girard-
Reynolds polymorphic lambda calculus.

Just as the simply typed lambda calculus allows to introduce variables rang-
ing over values, the parametric polymorphism in System F allows to introduce
variables ranging over types. For example, we can write a polymorphic identity
function as

Λα.λ(x : α).x : ∀α.α→ α,

and instantiate it to a given type τ as(
Λα.λ(x : α).x

)
[τ ] ≡ λ(x : τ).x : τ → τ.

While still being strongly normalizing, System F is much more expressive
than the simply typed lambda calculus, allowing to encode many other language
features[9].

The formalization of System F is significantly more complex than the other
case studies we have seen so far. We specify the semantics of a type application
e[τ ] not by substituting τ for the type variable in e, but instead by pushing τ
into the value environment, leaving the variable in e intact. As a consequence,
we need to introduce a type equivalence, that relates types with respect to
their value environments. For example, a type τ with respect to the empty
environment is equivalent to a type variable α with respect to the environment
that maps α to τ . Thus, the core lemmas of the soundness theorem are about
the interaction of type equivalence with substitution used in the type system.
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7.1 Syntax

The syntax of types is extended by universal quantification and variables. In
our formalization, we represent type variables using a special form of the locally
nameless encoding[2], that requires three different kinds of variables:

Inductive Typ : Type :=
| t arr (t1 t2 : Typ)
| t all (t : Typ)
| t var b (x : N)
| t var c (x : N)
| t var a (x : N) .

– the t all t is a universal type quantifying over a type variable in body t;

– the t var b variable represents a variable that’s bound by a universal type;

– the t var c variable represents a free variable, caused by a type applica-
tion;

– the t var a variable represents a free variable, that’s used if the type
equivalence relation goes under a binder.

The syntax of expressions is extended by two new forms:

Inductive Exp : Type :=
| e var (x : N)
| e abs (e : Exp)
| e app (e1 e2 : Exp)
| e tabs (e : Exp)
| e tapp (e : Exp) (t : Typ) .

– the e tabs e expression represents a type abstraction with body e; and

– the e tapp e t expression represents a type application of type t to ex-
pression e.

7.2 Type System

We start by adjusting the definition of type environments. Instead of assigning a
type to a variable referring to a regular value, an entry in the type environment
can now also state, that the variable refers to a type value, which itself has no
type.

Inductive TypBind : Type :=
| bind exp : Typ → TypBind
| bind typ : TypBind.

Definition TypEnv := List TypBind.

Next, we define a relation HasVars, such that HasVars b a c t states that
type t has at most b bound variables t var b that are not under a binder, at
most a free variables t var a from the type equivalence relation, and at most c
free variables t var c caused by type applications:
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Inductive HasVars : N → N → N → Typ → Prop :=
| hv arr :
∀ b a c t1 t2,
HasVars b a c t1 →
HasVars b a c t2 →
HasVars b a c ( t arr t1 t2)

| hv all :
∀ b a c t2,
HasVars (S b) a c t2 →
HasVars b a c ( t all t2)

| hv var c :
∀ b a c x,
c > x →
HasVars b a c ( t var c x)

| hv var a :
∀ b a c x,
a > x →
HasVars b a c ( t var a x)

| hv var b :
∀ b a c x,
b > x →
HasVars b a c ( t var b x) .

To specify the typing of a type application e tapp e t ’ , we need to substitute
the type variable bound by the universal type of e with t ’ . For this purpose we
define what it means to open a bound type variable b’ with type t ’ in type t:

Fixpoint open rec (b’ : N) (t’ : Typ) (t : Typ) : Typ :=
match t with
| t arr t1 t2 ⇒ t arr (open rec b’ t ’ t1) (open rec b’ t ’ t2)
| t all t2 ⇒ t all (open rec (S b’) t ’ t2)
| t var c c ⇒ t var c c
| t var a a ⇒ t var a a
| t var b b ⇒ if beq nat b’ b then t’ else t var b b
end.

Definition open t’ t := open rec 0 t’ t.

The typing relation is then extended as follows:

Inductive ExpTyp : TypEnv → Exp → Typ → Prop :=
| et var :
∀ x te t ,
HasVars 0 0 (length te) t →
indexr x te = some (bind exp t) →
ExpTyp te (e var x) t

| et app :
∀ te e1 e2 t1 t2,
ExpTyp te e1 ( t arr t1 t2) →
ExpTyp te e2 t1 →
ExpTyp te (e app e1 e2) t2

| et abs :
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∀ te e t1 t2,
HasVars 0 0 (length te) ( t arr t1 t2) →
ExpTyp ( bind exp t1 :: te) e t2 →
ExpTyp te (e abs e) ( t arr t1 t2)

| et tapp :
∀ te e t1 t2,
HasVars 0 0 (length te) t1 →
ExpTyp te e ( t all t2) →
ExpTyp te (e tapp e t1) (open t1 t2)

| et tabs :
∀ te e t2,
HasVars 0 0 (length te) ( t all t2) →
ExpTyp (bind typ :: te) e (open ( t var c (length te)) t2) →
ExpTyp te (e tabs e) ( t all t2) .

– the old constructors remain the same, except that we require HasVars 0 0
(length te) t evidence at multiple places. The purpose of this evidence,

is to exclude ill-formed types from the typing relation, that result from
our variable encoding. The evidence ensures, that types have no bound
variables that are not actually under any binder, and also no free variables
related to type equivalence, as we are not in a situation, where the type
equivalence has gone under a binder;

– the et tapp constructor states that a type application e tapp e t has type
open t1 t2, if e has a universal type t all t2, and t1 is a well-formed type,
as witnessed by HasVars; and

– the et tabs constructor states that a type abstraction e tabs e t has type
t all t2, if t all t2 is a well-formed type, i.e. t2 has only a single t var b

that is not yet bound, and if its body e has the type of t2, where the yet
unbound variable of t2 is opened by a free variable t var c .

7.3 Semantics

The extension to the semantics is straightforward. We have two new forms of
values:

Inductive Val :=
| v abs : List Val → Exp → Val
| v tabs : List Val → Exp → Val
| v typ : List Val → Typ → Val.

– a type abstraction closure v tabs ve t results from evaluating a type ab-
straction, just like a regular closure results from evaluating a lambda ab-
straction; and

– a type closure v typ ve t occurs in the evaluation of a type application,
and represents a type t that may have free t var c occurences referring to
other type closures in ve.
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The value environment remains the same:

Definition ValEnv := List Val.

The definitional interpreter is extended by two new cases for the new ex-
pression forms:

Fixpoint eval (n : N) (ve : ValEnv) (t : Exp) : CanTimeout (CanErr Val)
:=

match n with
| 0 ⇒ timeout
| S n ⇒

match t with
| e var x ⇒ done (indexr x ve)
| e abs e ⇒ done (noerr (v abs ve e))
| e tabs e ⇒ done (noerr (v tabs ve e))
| e app e1 e2 ⇒

’ v2 ← eval n ve e2;
’ v abs ve’ e1’ ← eval n ve e1;
eval n (v2 :: ve ’) e1’

| e tapp e t ⇒
’ v tabs ve’ e’ ← eval n ve e;
eval n (v typ ve t :: ve ’) e’

end
end.

– a type abstraction e tabs e is evaluated to a closure v tabs ve e, just like
a regular abstraction; and

– a type application e tapp e t is evaluated by first evaluating e to a closure
v tabs ve’ e’ , and then evaluating the closure’s body e’ in it’s captured
environment ve’ extended by the argument type t closed in the current
environment ve.

7.4 Type Soundness

As the type application puts the argument type as a type closure in the value
environment, we need to define a type equivalence relation, which relates types
with respect to their value environment. The type equivalence between universal
types is defined in terms of the type equivalence of their bodys. For this purpose
the bound variable is opened with a free variable t var a specific to the type
equivalence relation. To count those variables, we introduce an environment
AbsEnv as a list of Unit values:

Definition AbsEnv := List Unit.

We then state the type equivalence TEq, where TEq ve1 t1 ve2 t2 ae states
that the type t1 is in value environment ve1 equivalent to type t2 in value
environment ve2, where both types make use of at most length ae variables of
form t var a . When we use the type equivalence outside of its own definition,
we only need to compare types that have no t var a variables.
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Inductive TEq : ValEnv → Typ → ValEnv → Typ → AbsEnv → Prop :=
| teq arr :
∀ ve1 ve2 t1 t2 t1’ t2’ ae,
TEq ve1 t1 ve2 t2 ae →
TEq ve1 t1’ ve2 t2’ ae →
TEq ve1 (t arr t1 t1 ’) ve2 ( t arr t2 t2 ’) ae

| teq all :
∀ ve1 ve2 t1 t2 x ae,
x = length ae →
HasVars 1 (length ae) (length ve1) t1 →
HasVars 1 (length ae) (length ve2) t2 →
TEq ve1 (open (t var a x) t1) ve2 (open ( t var a x) t2) ( tt :: ae)

→
TEq ve1 ( t all t1) ve2 ( t all t2) ae

| teq var c1 :
∀ ve1 ve2 ve1’ t1’ x t2 ae,
indexr x ve1 = some (v typ ve1’ t1 ’) →
HasVars 0 0 (length ve1’) t1’ →
TEq ve1’ t1’ ve2 t2 ae →
TEq ve1 (t var c x) ve2 t2 ae

| teq var c2 :
∀ ve1 ve2 ve2’ t2’ x t1 ae,
indexr x ve2 = some (v typ ve2’ t2 ’) →
HasVars 0 0 (length ve2’) t2’ →
TEq ve1 t1 ve2’ t2’ ae →
TEq ve1 t1 ve2 ( t var c x) ae

| teq var c12 :
∀ ve1 ve2 v x1 x2 ae,
indexr x1 ve1 = some v →
indexr x2 ve2 = some v →
TEq ve1 (t var c x1) ve2 ( t var c x2) ae

| teq var a12 :
∀ ve1 ve2 x ae,
indexr x ae = some tt →
TEq ve1 (t var a x) ve2 ( t var a x) ae.

– the teq arr constructor states, that two arrow types are equivalent if their
components are equivalent in the same environments;

– the teq all constructor states, that two universal types are equivalent if
their bodys are equivalent, after opening them with the same free variable
t var a x, and extending the abstract environment ae by another unit
value tt to witness the new free variable;

– the teq var c1 constructor states, that a free type variable t var c x in
environment ve1, is equivalent to some other type t1 in environment ve2,
if x is mapped to another type closure v typ ve1’ t1’ , that’s equivalent to
t1 in environment ve2;

– the teq var c2 constructor is symmetric to teq var c1 ;
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– the teq var c12 constructor covers the case where both sides are variables
of form teq var c . If the variables are syntactically equal, then no other
evidence for equivalence is required; and

– the teq var a12 constructor is analogous to teq var c12 , but for free vari-
ables introduced by the teq all constructor. As those variables are ab-
stract, i.e. do not relate to any concrete type from a value environment,
syntactic equality is the only meaningful way to compare them.

For subtyping in Chapter 4, we extended the value typing, such that any
value can be given any supertype of its actual type. For System F, we extend the
value typing similarly, but with respect to type equivalence instead of subtyping.
A value typing ValTyp ve v t now states that value v has a type that’s equivalent
to t in value environment ve. The additonal ve index of ValTyp prevents the
use of Forall2 to model the well-formedness of value and type environments.
We thus define WfEnv from scratch, together with ValTyp as mutually inductive
types:

Inductive WfEnv : ValEnv → TypEnv → Prop :=
| wfe nil :

WfEnv nil nil
| wfe cons :
∀ v t ve te ,
ValTyp (v :: ve) v t →
WfEnv ve te →
WfEnv (v :: ve) (t :: te)

with ValTyp : ValEnv → Val → TypBind → Prop :=
| vt abs :
∀ ve1 ve2 te2 e t1 t2 t ,
WfEnv ve2 te2 →
ExpTyp ( bind exp t1 :: te2) e t2 →
TEq ve2 (t arr t1 t2) ve1 t [] →
ValTyp ve1 (v abs ve2 e) (bind exp t)

| vt tabs :
∀ ve1 ve2 te2 e t2 t ,
WfEnv ve2 te2 →
ExpTyp (bind typ :: te2) e (open ( t var c (length ve2)) t2) →
TEq ve2 ( t all t2) ve1 t [] →
ValTyp ve1 (v tabs ve2 e) (bind exp t)

| vt ty :
∀ ve1 ve2 te2 t ,
WfEnv ve2 te2 →
ValTyp ve1 (v typ ve2 t) bind typ .

– the vt abs constructor previously stated, that a lambda closure v abs ve2
e simply has the arrow type t arr t1 t2 corresponding to its body. For

System F, the arrow type t arr t1 t2 may contain type variables referring
to type closures in the captured value environment ve2. Hence, the closure
can now be given any type t in value environment ve1, such that t in ve1
is equivalent to t arr t1 t2 in ve2;
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– the vt tabs constructor states the typing of type abstraction closures
v tabs ve2 e. It is completely analogous to vt abs, requiring the a typing
of body e as stated by the type system; and

– the vt typ constructor states a type closure v typ ve2 t is well-formed, if
it’s captured value environment ve2 is well-formed with respect to some
type environment te2.

The statement of type soundness remains unchanged:

Theorem (Type Soundness).

∀ n e te ve mv t,
eval n ve e = done mv →
ExpTyp te e t →
WfEnv ve te →
∃ v, mv = noerr v ∧ ValTyp ve v (bind exp t) .
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Figure 7.1: Proof Graph for System F Soundness

7.5 Type Soundness Proof

Figure 7.1 shows the proof graph of the type soundness theorem. As the full for-
mal proof is rather lengthy, we only cover the theorem and its direct sublemmas
in detail, and refer to the implementation for the complete proof:

– Similar to subtyping, we need a lemma vt widen, that allows to transfer
a value typing ValTyp ve v t along a type equivalence TEq ve t ve’ t ’ ,
yielding ValTyp ve’ v t ’ . The lemma is used in the cases of lambda and
type applications to relate the value typing from our goal to the value
typing of the closure values produced by the induction hypothesis for the
closure body.

– Similar to subtyping, we need a lemma teq refl, that states the reflexivity
of the type equivalence TEq. The lemma is used in the cases of lambda and
type abstractions to build the value typing in the current environment.

– The teq subst lemma is used in the type application case. It states the
type equivalence between the direct type substitution performed by the
type system and the delayed type substitution performed by the semantics
through extending the value environment with a type closure. Proving this
lemma requires a fair amount of extra machinery as witnessed by the proof
graph.
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– The teq ext ve lemma is used in the lambda application case. It states that
type equivalence is preserved, if one of the involved value environments is
extended by a new entry.

– The wve indexr and wve length lemmas are used in the variable case, and
correspond to Lemma 2.4 (fa2 indexr) and Lemma 2.3 (fa2 length).

We start by proving the type soundness theorem:

Theorem 7.1 (Type Soundness).

∀ n e te ve mv t,
eval n ve e = done mv →
ExpTyp te e t →
WfEnv ve te →
∃ v, mv = noerr v ∧ ValTyp ve v (bind exp t) .

Proof. We start by induction over the number of steps n:

– Case 0. Contradiction; same as for the STLC.

– Case n + 1. We proceed by case analysis on the typing derivation ExpTyp te e t:

– Case et var . Same as for the STLC.

– Case et abs. Same as for the STLC, except that to construct the
value typing for the closure, we now have to proof reflexivity of type
equivalence, similar as it was the case with subtyping in Chapter 4.

– Case et tabs . Same as the et abs case.

– Case et app. Same as for the STLC, until we apply the induction
hypothesis to both subexpressions e1 and e2, and then invert the
resulting value typing ValTyp ve v1 (t arr t1 t2).

Whereas for the STLC, the inversion of the value typing revealed
that the body e1’ of the closure value is related directly to types t1
and t2:

v1 = v abs ve’ e1’ WfEnv ve’ te’ ExpTyp (t1 :: te ’) e1’ t2

It is now the case, that the body e1’ relates to some t1’ and t2’ , such
that t arr t1 t2 is in the current value environment ve equivalent to
t arr t1’ t2 ’ in the closure’s value environment ve’ :

v1 = v abs ve’ e1’ WfEnv ve’ te’ ExpTyp (bind exp t1’ :: te ’) e1’ t2’

TEq ve (t arr t1 t2) ve’ ( t arr t1’ t2 ’) []

Next, we apply the induction hypothesis to the closure body:

eval n (v2 :: ve ’) e1’ = done mv
WfEnv (v2 :: ve ’) (bind exp t1’ :: te ’)

ExpTyp (bind exp t1’ :: te ’) e1’ t2’

∃ v, mv = noerr v ∧ValTyp (v2 :: ve ’) v (bind exp t2 ’)
IH

We prove the missing WfEnv evidence in three steps:
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∗ we use the wfe cons constructor on the WfEnv ve’ te’ evidence
from the closure inversion, requiring us to proof a value typing:

WfEnv ve’ te’ ValTyp (v2 :: ve ’) v2 (bind exp t1 ’)

WfEnv (v2 :: ve ’) (bind exp t1’ :: te ’)
wfe cons

∗ we proof the value typing using Lemma 7.1 (vt widen) on the
value typing that resulted from the induction hypothesis, requir-
ing us to proof a type equivalence:

ValTyp ve v2 (bind exp t1) TEq ve t1 (v2 :: ve1) t1’ []

ValTyp (v2 :: ve ’) v2 (bind exp t1 ’)
vt widen

∗ we proof the type equivalence using Lemma 7.2 (teq ext ve) on
the type equivalence we retrived from the closure inversion:

TEq ve t1 ve1 t1’ []

TEq ve t1 (v2 :: ve1) t1’ []
teq ext ve

In contrast to the STLC, the application of the induction hypothesis
to the closure body didn’t directly solve our goal

∃ v, mv = noerr v ∧ValTyp ve v (bind exp t2)

but instead produced

∃ v, mv = noerr v ∧ValTyp (v2 :: ve ’) v (bind exp t2 ’)

We use Lemma 7.1 (vt widen) to instead proof that the types are
equivalent in their environments, and Lemma 7.2 (teq ext ve) to build
the type equivalence from a result of the closure inversion:

ValTyp ve v (bind exp t2)

TEq ve t2 ve’ t2’

TEq ve t2 (v2 :: ve ’) t2’
teq ext ve

ValTyp (v2 :: ve ’) v (bind exp t2 ’)
vt widen

– Case et tapp. By definition of et tapp, we have some t1, t2 , e1
such that

e = e tapp e1 t t = open t1 t2 ExpTyp te e1 ( t all t2)

HasVars 0 0 (length te) t1.

By definition of eval , the assumption

eval (n + 1) ve (e tapp e1 t) = done mv

reduces to

’ v tabs ve’ e’ ← eval n ve e1;
eval n (v typ ve t :: ve ’) e’ = done mv
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As before, we observe that there must be some mv1 such that

eval n ve e1 = done mv1

and then apply our induction hypothesis accordingly

eval n ve e1 = done mv1 WfEnv ve te
ExpTyp te e1 ( t all t2)

∃ v1, mv1 = noerr v1 ∧ValTyp ve v1 (bind exp ( t all t2))
IH

By inversion of the value typing of v1, we find that v1 has to be
a type abstraction closure with a body of type t2’ , such that t2’
in the captured environment ve’ is equivalent to t2 in the current
environment ve, i.e. there are some te ’, ve ’, e1 ’, t2 ’ such that

v1 = v tabs ve’ e1’ WfEnv ve’ te’ TEq ve’ ( t all t2 ’) ve ( t all t2)

ExpTyp (bind typ :: te ’) e1’ (open ( t var c (length ve ’) ) t2 ’)

By substituting for mv1, and v1, we find that

eval n ve e1 = done (noerr (v tabs ve’ e1’) )

so the monadic sequencing in our assumption about eval lets us de-
duce

eval n (v typ ve t :: ve ’) e1’ = done mv

We are now almost ready to apply the induction hypothesis to the
closure body:

eval n (v typ ve t :: ve ’) e1’ = done mv
ExpTyp (bind typ :: te ’) e1’ (open ( t var c (length ve ’) ) t2 ’)

WfEnv (v typ ve t :: ve ’) (bind typ :: te ’)

∃ v, mv = noerr v ∧
ValTyp (v typ ve t :: ve ’) v (open ( t var c (length ve ’) ) t2 ’)

IH

all that’s missing is the WfEnv evidence which we simply construct
from our assumptions:

WfEnv ve’ te’

WfEnv ve te

ValTyp (v typ ve t :: ve ’) (v typ ve t) bind typ
vt typ

WfEnv (v typ ve t :: ve ’) (bind typ :: te ’)
wfenv cons

Whereas in the e app case of the STLC, the application of the induc-
tion hypothesis to the closure body directly proved our goal, we now
have a mismatch:

ValTyp (v typ ve t :: ve ’) v (open ( t var c (length ve ’) ) t2 ’)

ValTyp ve v (bind exp (open t1 t2))
?
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We use the vt widen Lemma to instead proof the type equivalence

TEq (v typ ve t1 :: ve1) (open ( t var c (length ve1)) t2 ’)
ve (open t1 t2) []

which by the teq subst Lemma requires only the type equivalence we
already extracted from the closure’s value typing

TEq ve’ ( t all t2 ’) ve ( t all t2)

Lemma 7.1 (vt widen).

∀ vf H1 H2 t1 t2,
ValTyp H1 vf (bind exp t1) →
TEq H1 t1 H2 t2 [] →
ValTyp H2 vf (bind exp t2) .

Proof. Identical to the proof of Lemma 4.1 (vt widen) for subtyping, but using
transitivity of type equivalence instead of subtyping.

Lemma 7.2 (teq ext ve).

∀ (v : Val) (ve1 ve2 : ValEnv) (t1 t2 : Typ) ae,
TEq ve1 t1 ve2 t2 ae →
TEq (v :: ve1) t1 ve2 t2 ae ∧
TEq ve1 t1 (v :: ve2) t2 ae.

Proof. Straightforward induction over the TEq evidence, using 2 minor, techni-
cal lemmas.

Lemma 7.3 (teq refl).

∀ ae (ve : ValEnv) (t : Typ),
HasVars 0 (length ae) (length ve) t →
TEq ve t ve t ae.

Proof. Induction over the size of t using minor, technical lemmas.

Lemma 7.4 (teq subst).

∀ (t1 t2 t2’ : Typ) (ve ve’ : ValEnv),
HasVars 0 0 (length ve) t1 →
TEq ve ( t all t2)

ve’ ( t all t2 ’) [] →
TEq ve (open t1 t2)

(v typ ve t1 :: ve ’) (open ( t var c (length ve ’) ) t2 ’) [].

Proof. The main proof is by induction over the type equivalence, but a lot of
auxiliary definitions and lemmas are required.
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Lemma 7.5 (wve indexr).

∀ ve te x t ,
WfEnv ve te →
indexr x te = some t →
∃ v, indexr x ve = some v ∧ ValTyp ve v t.

Proof. Similar to Lemma 2.4 (fa2 indexr), but now the value typing retrieved
for older variables, relates to a suffix of ve, so we use Lemma 7.2 (teq ext ve) to
extend the value typing accordingly.

Lemma 7.6 (wve length).

∀ ve te ,
WfEnv ve te →
length ve = length te .

Proof. Identical to Lemma 2.3 (fa2 length),

70



Bibliography

[1] N. Amin and R. Tate. Java and scala’s type systems are unsound: the
existential crisis of null pointers. Acm Sigplan Notices, 51(10):838–848,
2016.
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